Please use this identifier to cite or link to this item:
https://dspace.univ-guelma.dz/jspui/handle/123456789/17410
Title: | DeployingArtificialIntelligencetechniquesfor SupportingDecisionsintheBusinessProcess Area |
Authors: | AFIFI, Chaima |
Keywords: | Artificial Intelligence,BusinessProcess,BusinessProcessModel,Caps- net, Chat-bots,DecisionMaking,EventLogs,GPT-3.5-turbo,KnowledgeGraphs. |
Issue Date: | 8-Jul-2025 |
Abstract: | Business Processes(BP)constitutetheheartofInformationSystems(IS)ofmodern organizations. Thus,theyareintensivelyutilized,bothinthemanagementofvarious companies’ resourcesandindecision-makingandstrategicalignmentactivities.The abstract specifications (or models) expressing thebusinesslogicbehindtheBPsarees- sentialconceptualtoolsusefulforvarioustasks,varyingformmodeling,analysis,moni- toring andmaintenance.However,withthespectacularincreaseinthevolumeofdata handled duringthelifecycleofBPs,whichisoftenheterogeneousinnature,conven- tional approachesformodelingandminingBPmodelsprovetobeineffective,hindering decision-making actions. Toovercometheselimitations,inthisthesisweleveragethelatestadvancementsachieved in theAIareainordertoimprovedecisionsupportsystemsinthefieldofBPsmanage- ment.Thefirstcontributionofthisthesisconsistsofaconceptualframework,calledDSS for BP(DSS4BP),whichallowsconstructingaKnowledgeGraph(KG)thatrepresents the datamanipulatedbytheBPsandtheirlinks.TheconstructedKGispoweredbya graphical capsuleneuralnetwork,anditspurposeistoenablepredictiveanalysisoffu- ture activitiesduringtheprogressionofaBP.ThisDSS4BPisbasedontheG-CAPS-NN architecturetrainedtodiscovertheKG-BP.ThisKGexcelsincapturingcomplexde- pendencieswithintheactivityflowscontainedinthedifferentBPsspecifications.Thus, the developedgraphpromotesahighpredictionoffutureeventsandadeepcontextual understanding ofBPvariationsandevolution.Oursecondcontributionisachat-bot named BPforDecisionSupportSystem(BP-DSS3),whichrefinestheGPT-3.5-turbo chat-bottoassistBPmanagedmakingmoreinformeddecisions.ThisBP-DSS3chat-bot leveragesdeeplearningtechniquestoprovidepersonalizedanddomain-specificdecision support.Afterthetrainingphase,itachievesahighlevelofprecisionandaccuracy when managingreal-worldscenarios,suchasAlignmentwithOrganizationalObjectives (AOO)andRiskManagementandContingencyPlanning(RMCP). The experimentsareconductedbasingonreal-worlddata,thetwoproposedframe- workshavedemonstratedsignificantimprovementsintermsofefficiency,adaptability, and performancecomparedtotraditionalapproaches.DSS4BPenablesorganizationsto proactivelyidentifyinefficienciesandpredictfutureoutcomesofdeployedbusinesspro- cesses, whileBP-DSS3significantlyimprovesdecision-makingbyprovidingactionable and domain-specificinformation. |
URI: | https://dspace.univ-guelma.dz/jspui/handle/123456789/17410 |
Appears in Collections: | Thèses de Doctorat |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
THESE DE DOCTORAT AFIFI CHAIMA.pdf | 8,27 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.