Please use this identifier to cite or link to this item: https://dspace.univ-guelma.dz/jspui/handle/123456789/17410
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAFIFI, Chaima-
dc.date.accessioned2025-07-15T10:10:47Z-
dc.date.available2025-07-15T10:10:47Z-
dc.date.issued2025-07-08-
dc.identifier.urihttps://dspace.univ-guelma.dz/jspui/handle/123456789/17410-
dc.description.abstractBusiness Processes(BP)constitutetheheartofInformationSystems(IS)ofmodern organizations. Thus,theyareintensivelyutilized,bothinthemanagementofvarious companies’ resourcesandindecision-makingandstrategicalignmentactivities.The abstract specifications (or models) expressing thebusinesslogicbehindtheBPsarees- sentialconceptualtoolsusefulforvarioustasks,varyingformmodeling,analysis,moni- toring andmaintenance.However,withthespectacularincreaseinthevolumeofdata handled duringthelifecycleofBPs,whichisoftenheterogeneousinnature,conven- tional approachesformodelingandminingBPmodelsprovetobeineffective,hindering decision-making actions. Toovercometheselimitations,inthisthesisweleveragethelatestadvancementsachieved in theAIareainordertoimprovedecisionsupportsystemsinthefieldofBPsmanage- ment.Thefirstcontributionofthisthesisconsistsofaconceptualframework,calledDSS for BP(DSS4BP),whichallowsconstructingaKnowledgeGraph(KG)thatrepresents the datamanipulatedbytheBPsandtheirlinks.TheconstructedKGispoweredbya graphical capsuleneuralnetwork,anditspurposeistoenablepredictiveanalysisoffu- ture activitiesduringtheprogressionofaBP.ThisDSS4BPisbasedontheG-CAPS-NN architecturetrainedtodiscovertheKG-BP.ThisKGexcelsincapturingcomplexde- pendencieswithintheactivityflowscontainedinthedifferentBPsspecifications.Thus, the developedgraphpromotesahighpredictionoffutureeventsandadeepcontextual understanding ofBPvariationsandevolution.Oursecondcontributionisachat-bot named BPforDecisionSupportSystem(BP-DSS3),whichrefinestheGPT-3.5-turbo chat-bottoassistBPmanagedmakingmoreinformeddecisions.ThisBP-DSS3chat-bot leveragesdeeplearningtechniquestoprovidepersonalizedanddomain-specificdecision support.Afterthetrainingphase,itachievesahighlevelofprecisionandaccuracy when managingreal-worldscenarios,suchasAlignmentwithOrganizationalObjectives (AOO)andRiskManagementandContingencyPlanning(RMCP). The experimentsareconductedbasingonreal-worlddata,thetwoproposedframe- workshavedemonstratedsignificantimprovementsintermsofefficiency,adaptability, and performancecomparedtotraditionalapproaches.DSS4BPenablesorganizationsto proactivelyidentifyinefficienciesandpredictfutureoutcomesofdeployedbusinesspro- cesses, whileBP-DSS3significantlyimprovesdecision-makingbyprovidingactionable and domain-specificinformation.en_US
dc.language.isoenen_US
dc.subjectArtificial Intelligence,BusinessProcess,BusinessProcessModel,Caps- net, Chat-bots,DecisionMaking,EventLogs,GPT-3.5-turbo,KnowledgeGraphs.en_US
dc.titleDeployingArtificialIntelligencetechniquesfor SupportingDecisionsintheBusinessProcess Areaen_US
dc.typeThesisen_US
Appears in Collections:Thèses de Doctorat

Files in This Item:
File Description SizeFormat 
THESE DE DOCTORAT AFIFI CHAIMA.pdf8,27 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.