Dépôt DSpace/Manakin

Theoretical and Numerical Studies of High-Order Problems

Afficher la notice abrégée

dc.contributor.author KHALFALLAOUI, Roumaissa
dc.date.accessioned 2025-10-15T10:37:27Z
dc.date.available 2025-10-15T10:37:27Z
dc.date.issued 2025-10-12
dc.identifier.uri https://dspace.univ-guelma.dz/jspui/handle/123456789/18250
dc.description.abstract In this thesis, we aim to conduct analytical and approximate (numerical) studies on higher-order partial differential equations. In the first work, we investigate a class of nonlinear parabolic integro-differential equations with an unknown flux on a part of the Dirichlet boundary, treating it both analytically and numerically. To this end, we employ the Rothe method. The second work is primarily theoretical, we study hyperbolic p(.)-biharmonic equation with no flux boundary condition. We prove the existence and blow-up behavior of the weak solution using the Galerkin method. Finally, in the third work, we show the approximation studies to evolution p-biharmonic problem employing the mixed finite element method combined with the Rothe method. en_US
dc.language.iso en en_US
dc.subject A priori error estimation, weak solution, fully discretized problem, mixed finite element method, Rothe method, Galerkin method, blow-up of the solution, global existence, parabolic equation, hyperbolic equation, p-Laplace equation, p(.)-biharmonic equation, integro-differential equation, unknown Dirichlet condition, negative initial energy. en_US
dc.title Theoretical and Numerical Studies of High-Order Problems en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte