Please use this identifier to cite or link to this item:
https://dspace.univ-guelma.dz/jspui/handle/123456789/18552Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | TALBI, Hana | - |
| dc.date.accessioned | 2025-10-28T07:48:33Z | - |
| dc.date.available | 2025-10-28T07:48:33Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | https://dspace.univ-guelma.dz/jspui/handle/123456789/18552 | - |
| dc.description.abstract | In this work, we consider the limit cycles of a class of polynomial differential systems of the form {<K1.1/>┊ <K1.1 ilk="MATRIX" > u=v-ε(g₁¹(u)+f₁¹(u)v)-ε²(g₁²(u)+f₁²(u)v), v=-u-ε(g₂¹(u)+f₂¹(u)v)-ε²(g₂²(u)+f₂²(u)v), </K1.1> where g₁¹,g₁²,f₁¹,f₁²,g₂¹,g₂²,f_{2 }¹and f₂² are polynomials of a given degree and ε is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of a linear center u=v, v=-u, by using the averaging theory of first and second order. This work addresses a special case of the second part of Hilbert's 16th problem, which remains unsolved in general. The results contribute to the qualitative understanding of perturbed planar polynomial systems. | en_US |
| dc.language.iso | fr | en_US |
| dc.publisher | University of Guelma | en_US |
| dc.subject | Systèmes différentiels polynomiaux, Systèmes de Liénard, Cycle limite, Méthode de moyennisation | en_US |
| dc.title | Solutions périodiques de certaines classes d'équations différentielles perturbées | en_US |
| dc.type | Working Paper | en_US |
| Appears in Collections: | Master | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| F5_X5_TALBI_Hana.pdf | 893,77 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.