Please use this identifier to cite or link to this item: https://dspace.univ-guelma.dz/jspui/handle/123456789/18552
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTALBI, Hana-
dc.date.accessioned2025-10-28T07:48:33Z-
dc.date.available2025-10-28T07:48:33Z-
dc.date.issued2025-
dc.identifier.urihttps://dspace.univ-guelma.dz/jspui/handle/123456789/18552-
dc.description.abstractIn this work, we consider the limit cycles of a class of polynomial differential systems of the form {<K1.1/>┊ <K1.1 ilk="MATRIX" > u=v-ε(g₁¹(u)+f₁¹(u)v)-ε²(g₁²(u)+f₁²(u)v), v=-u-ε(g₂¹(u)+f₂¹(u)v)-ε²(g₂²(u)+f₂²(u)v), </K1.1> where g₁¹,g₁²,f₁¹,f₁²,g₂¹,g₂²,f_{2 }¹and f₂² are polynomials of a given degree and ε is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of a linear center u=v, v=-u, by using the averaging theory of first and second order. This work addresses a special case of the second part of Hilbert's 16th problem, which remains unsolved in general. The results contribute to the qualitative understanding of perturbed planar polynomial systems.en_US
dc.language.isofren_US
dc.publisherUniversity of Guelmaen_US
dc.subjectSystèmes différentiels polynomiaux, Systèmes de Liénard, Cycle limite, Méthode de moyennisationen_US
dc.titleSolutions périodiques de certaines classes d'équations différentielles perturbéesen_US
dc.typeWorking Paperen_US
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
F5_X5_TALBI_Hana.pdf893,77 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.