Please use this identifier to cite or link to this item: https://dspace.univ-guelma.dz/jspui/handle/123456789/18551
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBELHIRECHE, Nor el houda-
dc.date.accessioned2025-10-28T07:45:31Z-
dc.date.available2025-10-28T07:45:31Z-
dc.date.issued2025-
dc.identifier.urihttps://dspace.univ-guelma.dz/jspui/handle/123456789/18551-
dc.description.abstractn this thesis, we study a particular class of nonlinear Volterra integrodifferential equations with delay. Such equations are used to model dynamic phenomena that depend on the system’s history as well as a delayed term. We first recal the existence and uniqueness of the solution using the Picard iteration method. Then, we propose a numerical method based on backward finite differences, combined with a Nyström-type quadrature to handle the integral term. The analysis of the discrete system shows that the method is well-posed and convergent. Numerical simulations demonstrate the efficiency and accuracy of the proposed approach, confirming its relevance for solving this type of complex equation.en_US
dc.language.isofren_US
dc.publisherUniversity of Guelmaen_US
dc.subjectvolterra integral equation, Picard method, Finite defference method, Numerical integrationen_US
dc.titleTraitement numérique par différence finie des équations intégro-différentielles avec retarden_US
dc.typeWorking Paperen_US
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
F5_X5_BELHIRECHE_Nor el houda.pdf1,08 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.