Please use this identifier to cite or link to this item:
https://dspace.univ-guelma.dz/jspui/handle/123456789/18549Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | MENASRIA, ABDEL MAMOUNE | - |
| dc.date.accessioned | 2025-10-28T07:38:39Z | - |
| dc.date.available | 2025-10-28T07:38:39Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | https://dspace.univ-guelma.dz/jspui/handle/123456789/18549 | - |
| dc.description.abstract | This thesis focuses on the existence and mass concentration behavior of minimizers for rotating Bose-Einstein condensates (BEC) with attractive interactions in a bounded domain D⊂R^ 2 . It is shown that there exists a finite constant a^* , representing primarily the critical number of bosons in the system, such that the minimal energy e(a) admits minimizers if and only if 0<a<a ^∗ , regardless of the trapping potential V(x) and the rotation speed Ω≥0. This result stands in stark contrast to the case of rotating BECs in the entire plane, where the existence of minimizers depends on the value of Ω Ω. Furthermore, by establishing precise estimates for the rotational term and the minimal energy, we also analyze the mass concentration behavior of the minimizers under a harmonic potential as a↗a | en_US |
| dc.language.iso | fr | en_US |
| dc.publisher | University of Guelma | en_US |
| dc.subject | condensation de Bose Einstien vitesse de rotation concentration de masse Domaine borné | en_US |
| dc.title | L'étude de l'éxistence et la discipline des états fondamentaux de condensats de Bose -Einstien | en_US |
| dc.type | Working Paper | en_US |
| Appears in Collections: | Master | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| F5_X5_MENASRIA_ABDEL MAMOUNE.pdf | 395,49 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.