Please use this identifier to cite or link to this item: https://dspace.univ-guelma.dz/jspui/handle/123456789/18549
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMENASRIA, ABDEL MAMOUNE-
dc.date.accessioned2025-10-28T07:38:39Z-
dc.date.available2025-10-28T07:38:39Z-
dc.date.issued2025-
dc.identifier.urihttps://dspace.univ-guelma.dz/jspui/handle/123456789/18549-
dc.description.abstractThis thesis focuses on the existence and mass concentration behavior of minimizers for rotating Bose-Einstein condensates (BEC) with attractive interactions in a bounded domain D⊂R^ 2 . It is shown that there exists a finite constant a^* , representing primarily the critical number of bosons in the system, such that the minimal energy e(a) admits minimizers if and only if 0<a<a ^∗ , regardless of the trapping potential V(x) and the rotation speed Ω≥0. This result stands in stark contrast to the case of rotating BECs in the entire plane, where the existence of minimizers depends on the value of Ω Ω. Furthermore, by establishing precise estimates for the rotational term and the minimal energy, we also analyze the mass concentration behavior of the minimizers under a harmonic potential as a↗aen_US
dc.language.isofren_US
dc.publisherUniversity of Guelmaen_US
dc.subjectcondensation de Bose Einstien vitesse de rotation concentration de masse Domaine bornéen_US
dc.titleL'étude de l'éxistence et la discipline des états fondamentaux de condensats de Bose -Einstienen_US
dc.typeWorking Paperen_US
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
F5_X5_MENASRIA_ABDEL MAMOUNE.pdf395,49 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.