Please use this identifier to cite or link to this item:
https://dspace.univ-guelma.dz/jspui/handle/123456789/13979| Title: | Pattern recognition using collaborative neural networks |
| Authors: | SIOUDA, Roguia |
| Keywords: | Patternrecognition,classification,neuralnetworks,machinelearning,deeplearn- ing, ECGdataset. iv |
| Issue Date: | 10-Nov-2022 |
| Abstract: | Artificial neuralnetworkshavebeensuccessfullyappliedtoawiderangeofproblems.Inpat- tern recognition,theyhavebeenusedinseveraltasks,suchasfeatureextraction,dimension reduction, andclassification.Inthiswork,weproposetwoECGheartbeatclassificationmodels based oncollaboratingdifferenttypesofneuralnetworks.Themainaimistocombinetheir complementaryproperties. The firstmodelusesastackedsparseautoencoder(SSAE)asfeatureextractorandasystem of multipleMulti-layeredperceptrons(MLP)asaclassifier.Inthismodel,theentireproblem is dividedintosimplerparts,whichareresolvedusingdifferentMLPs.Thesecondmodelalso uses aSSAEtoextractfeaturesinadditiontotwootherdynamicfeatures.Inthismodel,the classification isperformedbyahybridneuralmodelbasedoncombiningrandomandRBFneural networks. The proposedmodelsareevaluatedontheMIT-BIHarrhythmiadataset.Thetestsarebasedon the inter-patientparadigm,inwhichthetrainingandtestdataaretakenfromdifferentpatients. The obtainedresultsarecomparedwithsomeofthestate-of-the-artmethods. |
| URI: | http://dspace.univ-guelma.dz/jspui/handle/123456789/13979 |
| Appears in Collections: | Thèses de Doctorat |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| These rokia finale.pdf | 2,65 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.