Please use this identifier to cite or link to this item: http://dspace.univ-guelma.dz/jspui/handle/123456789/13979
Title: Pattern recognition using collaborative neural networks
Authors: SIOUDA, Roguia
Keywords: Patternrecognition,classification,neuralnetworks,machinelearning,deeplearn- ing, ECGdataset. iv
Issue Date: 10-Nov-2022
Abstract: Artificial neuralnetworkshavebeensuccessfullyappliedtoawiderangeofproblems.Inpat- tern recognition,theyhavebeenusedinseveraltasks,suchasfeatureextraction,dimension reduction, andclassification.Inthiswork,weproposetwoECGheartbeatclassificationmodels based oncollaboratingdifferenttypesofneuralnetworks.Themainaimistocombinetheir complementaryproperties. The firstmodelusesastackedsparseautoencoder(SSAE)asfeatureextractorandasystem of multipleMulti-layeredperceptrons(MLP)asaclassifier.Inthismodel,theentireproblem is dividedintosimplerparts,whichareresolvedusingdifferentMLPs.Thesecondmodelalso uses aSSAEtoextractfeaturesinadditiontotwootherdynamicfeatures.Inthismodel,the classification isperformedbyahybridneuralmodelbasedoncombiningrandomandRBFneural networks. The proposedmodelsareevaluatedontheMIT-BIHarrhythmiadataset.Thetestsarebasedon the inter-patientparadigm,inwhichthetrainingandtestdataaretakenfromdifferentpatients. The obtainedresultsarecomparedwithsomeofthestate-of-the-artmethods.
URI: http://dspace.univ-guelma.dz/jspui/handle/123456789/13979
Appears in Collections:Thèses de Doctorat

Files in This Item:
File Description SizeFormat 
These rokia finale.pdf2,65 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.