Please use this identifier to cite or link to this item:
https://dspace.univ-guelma.dz/jspui/handle/123456789/13979Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | SIOUDA, Roguia | - |
| dc.date.accessioned | 2022-11-17T09:29:52Z | - |
| dc.date.available | 2022-11-17T09:29:52Z | - |
| dc.date.issued | 2022-11-10 | - |
| dc.identifier.uri | http://dspace.univ-guelma.dz/jspui/handle/123456789/13979 | - |
| dc.description.abstract | Artificial neuralnetworkshavebeensuccessfullyappliedtoawiderangeofproblems.Inpat- tern recognition,theyhavebeenusedinseveraltasks,suchasfeatureextraction,dimension reduction, andclassification.Inthiswork,weproposetwoECGheartbeatclassificationmodels based oncollaboratingdifferenttypesofneuralnetworks.Themainaimistocombinetheir complementaryproperties. The firstmodelusesastackedsparseautoencoder(SSAE)asfeatureextractorandasystem of multipleMulti-layeredperceptrons(MLP)asaclassifier.Inthismodel,theentireproblem is dividedintosimplerparts,whichareresolvedusingdifferentMLPs.Thesecondmodelalso uses aSSAEtoextractfeaturesinadditiontotwootherdynamicfeatures.Inthismodel,the classification isperformedbyahybridneuralmodelbasedoncombiningrandomandRBFneural networks. The proposedmodelsareevaluatedontheMIT-BIHarrhythmiadataset.Thetestsarebasedon the inter-patientparadigm,inwhichthetrainingandtestdataaretakenfromdifferentpatients. The obtainedresultsarecomparedwithsomeofthestate-of-the-artmethods. | en_US |
| dc.language.iso | en | en_US |
| dc.subject | Patternrecognition,classification,neuralnetworks,machinelearning,deeplearn- ing, ECGdataset. iv | en_US |
| dc.title | Pattern recognition using collaborative neural networks | en_US |
| dc.type | Thesis | en_US |
| Appears in Collections: | Thèses de Doctorat | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| These rokia finale.pdf | 2,65 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.