Please use this identifier to cite or link to this item: http://dspace.univ-guelma.dz/jspui/handle/123456789/13979
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSIOUDA, Roguia-
dc.date.accessioned2022-11-17T09:29:52Z-
dc.date.available2022-11-17T09:29:52Z-
dc.date.issued2022-11-10-
dc.identifier.urihttp://dspace.univ-guelma.dz/jspui/handle/123456789/13979-
dc.description.abstractArtificial neuralnetworkshavebeensuccessfullyappliedtoawiderangeofproblems.Inpat- tern recognition,theyhavebeenusedinseveraltasks,suchasfeatureextraction,dimension reduction, andclassification.Inthiswork,weproposetwoECGheartbeatclassificationmodels based oncollaboratingdifferenttypesofneuralnetworks.Themainaimistocombinetheir complementaryproperties. The firstmodelusesastackedsparseautoencoder(SSAE)asfeatureextractorandasystem of multipleMulti-layeredperceptrons(MLP)asaclassifier.Inthismodel,theentireproblem is dividedintosimplerparts,whichareresolvedusingdifferentMLPs.Thesecondmodelalso uses aSSAEtoextractfeaturesinadditiontotwootherdynamicfeatures.Inthismodel,the classification isperformedbyahybridneuralmodelbasedoncombiningrandomandRBFneural networks. The proposedmodelsareevaluatedontheMIT-BIHarrhythmiadataset.Thetestsarebasedon the inter-patientparadigm,inwhichthetrainingandtestdataaretakenfromdifferentpatients. The obtainedresultsarecomparedwithsomeofthestate-of-the-artmethods.en_US
dc.language.isoenen_US
dc.subjectPatternrecognition,classification,neuralnetworks,machinelearning,deeplearn- ing, ECGdataset. iven_US
dc.titlePattern recognition using collaborative neural networksen_US
dc.typeThesisen_US
Appears in Collections:Thèses de Doctorat

Files in This Item:
File Description SizeFormat 
These rokia finale.pdf2,65 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.