Afficher la notice abrégée
| dc.contributor.author |
TALBI, Hana |
|
| dc.date.accessioned |
2025-10-28T07:48:33Z |
|
| dc.date.available |
2025-10-28T07:48:33Z |
|
| dc.date.issued |
2025 |
|
| dc.identifier.uri |
https://dspace.univ-guelma.dz/jspui/handle/123456789/18552 |
|
| dc.description.abstract |
In this work, we consider the limit cycles of a class of polynomial differential systems of the form {<K1.1/>┊ <K1.1 ilk="MATRIX" > u=v-ε(g₁¹(u)+f₁¹(u)v)-ε²(g₁²(u)+f₁²(u)v), v=-u-ε(g₂¹(u)+f₂¹(u)v)-ε²(g₂²(u)+f₂²(u)v), </K1.1> where g₁¹,g₁²,f₁¹,f₁²,g₂¹,g₂²,f_{2 }¹and f₂² are polynomials of a given degree and ε is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of a linear center u=v, v=-u, by using the averaging theory of first and second order. This work addresses a special case of the second part of Hilbert's 16th problem, which remains unsolved in general. The results contribute to the qualitative understanding of perturbed planar polynomial systems. |
en_US |
| dc.language.iso |
fr |
en_US |
| dc.publisher |
University of Guelma |
en_US |
| dc.subject |
Systèmes différentiels polynomiaux, Systèmes de Liénard, Cycle limite, Méthode de moyennisation |
en_US |
| dc.title |
Solutions périodiques de certaines classes d'équations différentielles perturbées |
en_US |
| dc.type |
Working Paper |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée