Dépôt DSpace/Manakin

Solutions périodiques de certaines classes d'équations différentielles perturbées

Afficher la notice abrégée

dc.contributor.author TALBI, Hana
dc.date.accessioned 2025-10-28T07:48:33Z
dc.date.available 2025-10-28T07:48:33Z
dc.date.issued 2025
dc.identifier.uri https://dspace.univ-guelma.dz/jspui/handle/123456789/18552
dc.description.abstract In this work, we consider the limit cycles of a class of polynomial differential systems of the form {<K1.1/>┊ <K1.1 ilk="MATRIX" > u=v-ε(g₁¹(u)+f₁¹(u)v)-ε²(g₁²(u)+f₁²(u)v), v=-u-ε(g₂¹(u)+f₂¹(u)v)-ε²(g₂²(u)+f₂²(u)v), </K1.1> where g₁¹,g₁²,f₁¹,f₁²,g₂¹,g₂²,f_{2 }¹and f₂² are polynomials of a given degree and ε is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of a linear center u=v, v=-u, by using the averaging theory of first and second order. This work addresses a special case of the second part of Hilbert's 16th problem, which remains unsolved in general. The results contribute to the qualitative understanding of perturbed planar polynomial systems. en_US
dc.language.iso fr en_US
dc.publisher University of Guelma en_US
dc.subject Systèmes différentiels polynomiaux, Systèmes de Liénard, Cycle limite, Méthode de moyennisation en_US
dc.title Solutions périodiques de certaines classes d'équations différentielles perturbées en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte