Afficher la notice abrégée
| dc.contributor.author |
MENASRIA, ABDEL MAMOUNE |
|
| dc.date.accessioned |
2025-10-28T07:38:39Z |
|
| dc.date.available |
2025-10-28T07:38:39Z |
|
| dc.date.issued |
2025 |
|
| dc.identifier.uri |
https://dspace.univ-guelma.dz/jspui/handle/123456789/18549 |
|
| dc.description.abstract |
This thesis focuses on the existence and mass concentration behavior of minimizers for rotating Bose-Einstein condensates (BEC) with attractive interactions in a bounded domain D⊂R^ 2 . It is shown that there exists a finite constant a^* , representing primarily the critical number of bosons in the system, such that the minimal energy e(a) admits minimizers if and only if 0<a<a ^∗ , regardless of the trapping potential V(x) and the rotation speed Ω≥0. This result stands in stark contrast to the case of rotating BECs in the entire plane, where the existence of minimizers depends on the value of Ω Ω. Furthermore, by establishing precise estimates for the rotational term and the minimal energy, we also analyze the mass concentration behavior of the minimizers under a harmonic potential as a↗a |
en_US |
| dc.language.iso |
fr |
en_US |
| dc.publisher |
University of Guelma |
en_US |
| dc.subject |
condensation de Bose Einstien vitesse de rotation concentration de masse Domaine borné |
en_US |
| dc.title |
L'étude de l'éxistence et la discipline des états fondamentaux de condensats de Bose -Einstien |
en_US |
| dc.type |
Working Paper |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée