Afficher la notice abrégée
dc.contributor.author |
TABIB, MERYEM |
|
dc.date.accessioned |
2025-10-20T07:43:49Z |
|
dc.date.available |
2025-10-20T07:43:49Z |
|
dc.date.issued |
2025 |
|
dc.identifier.uri |
https://dspace.univ-guelma.dz/jspui/handle/123456789/18295 |
|
dc.description.abstract |
Fractional delay differential equations constitute a powerful mathematical framework
for modeling complex dynamical phenomena exhibiting memory and delay effects. In
this study, we investigate a class of fractional delay differential equations incorporating
Caputo and Riemann-Liouville fractional derivatives with a delay term. Unlike previous
approaches, we establish the existence and uniqueness of the analytical solution under
relaxed Lipschitz conditions on the nonlinear terms, without requiring contraction assumptions. Utilizing Picard iteration techniques, we demonstrate convergence of the
numerical method under these Lipschitz conditions, thereby broadening the applicability
of our model to a wider range of real-world scenarios. Additionally, numerical tests are
conducted to validate the effectiveness and accuracy of the proposed method, further
highlighting its utility in practical applications. Our findings offer new insights into the
modeling and analysis of complex dynamical systems, with implications for various scientific and engineering disciplines. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
University of Guelma |
en_US |
dc.subject |
معادلة تفاضل كسرية، معامل التأخير، طريقة بيكارد، التكامل العددي، شروط ليبشيتز. |
en_US |
dc.title |
Analytical and Numerical Treatment of a Fractional Model for the PANTOGRAPH |
en_US |
dc.type |
Working Paper |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée