Dépôt DSpace/Manakin

Analytical and Numerical Treatment of a Fractional Model for the PANTOGRAPH

Afficher la notice abrégée

dc.contributor.author TABIB, MERYEM
dc.date.accessioned 2025-10-20T07:43:49Z
dc.date.available 2025-10-20T07:43:49Z
dc.date.issued 2025
dc.identifier.uri https://dspace.univ-guelma.dz/jspui/handle/123456789/18295
dc.description.abstract Fractional delay differential equations constitute a powerful mathematical framework for modeling complex dynamical phenomena exhibiting memory and delay effects. In this study, we investigate a class of fractional delay differential equations incorporating Caputo and Riemann-Liouville fractional derivatives with a delay term. Unlike previous approaches, we establish the existence and uniqueness of the analytical solution under relaxed Lipschitz conditions on the nonlinear terms, without requiring contraction assumptions. Utilizing Picard iteration techniques, we demonstrate convergence of the numerical method under these Lipschitz conditions, thereby broadening the applicability of our model to a wider range of real-world scenarios. Additionally, numerical tests are conducted to validate the effectiveness and accuracy of the proposed method, further highlighting its utility in practical applications. Our findings offer new insights into the modeling and analysis of complex dynamical systems, with implications for various scientific and engineering disciplines. en_US
dc.language.iso en en_US
dc.publisher University of Guelma en_US
dc.subject معادلة تفاضل كسرية، معامل التأخير، طريقة بيكارد، التكامل العددي، شروط ليبشيتز. en_US
dc.title Analytical and Numerical Treatment of a Fractional Model for the PANTOGRAPH en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte