Dépôt DSpace/Manakin

Étude de la solution d'un problème aux limites pour une èquation différentielle ordinaire du troisième ordre à trois points

Afficher la notice abrégée

dc.contributor.author LAIB, FADIA
dc.date.accessioned 2025-10-20T07:35:31Z
dc.date.available 2025-10-20T07:35:31Z
dc.date.issued 2025
dc.identifier.uri https://dspace.univ-guelma.dz/jspui/handle/123456789/18294
dc.description.abstract The objective of this work is to establish the existence, the uniqueness and the positivity of a solution for a boundary value problem generated by differential equation of third order, using the Leray-Schauder nonlinear alternative, the Vanach contraction principle and theGuo-Krasnosel'skii fixed point theorem. The memory consists of an introduction and three chapters. The first chapter reminds afew basics of functional analysis that will be used later. In the second chapter, we will present some results of fixed point theory, such as: the fixed point theorem of Banach, Brouwer, Schauder and finally, we will discuss the Guo-Krasnosel'skii fixed point theorem. In the last chapter, we studied the existence, uniqueness and positivity of the solution for a third order boundary value problem, where the boundary conditions are imposed in three points. The obtained results are illustrated by examples. We conclude this memory by a bibliography. en_US
dc.language.iso fr en_US
dc.publisher University of Guelma en_US
dc.subject Théorème de Guo‐Krasnosel'skii, Alternative non linéaire de Leray-Schauder, Principe de contraction de Banach, Problème aux limites, Existence de la solution, Unicité, Positivité de la solution en_US
dc.title Étude de la solution d'un problème aux limites pour une èquation différentielle ordinaire du troisième ordre à trois points en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte