Dépôt DSpace/Manakin

Automated Epilepsy Seizure Detection in Pediatric Using Machine Learning

Afficher la notice abrégée

dc.contributor.author DOGHMENE, Sarra
dc.date.accessioned 2025-10-16T08:32:10Z
dc.date.available 2025-10-16T08:32:10Z
dc.date.issued 2025
dc.identifier.uri https://dspace.univ-guelma.dz/jspui/handle/123456789/18271
dc.description.abstract Epilepsy is a prevalent neurological disorder marked by recurrent and unpredictable seizures. In pediatric patients, early and accurate detection is critical to enabling timely medical intervention and improving long-term health outcomes. This thesis presents the development of an automated system for epileptic seizure detection in children using machine learning techniques. The proposed approach leverages a one-dimensional convolutional neural network (1D-CNN) model to analyse and classify CHB-MIT EEG data for the detection of ictal events. The system demonstrates high performance, achieving an accuracy of 97%, sensitivity of 97.03% and specificity of 96.83%. These results indicate the model’s strong ability to distinguish between ictal and preictal states, with a low false positive rate (3.17%) and false negative rate (2.97%). The results are promising and highlight the potential of the proposed system in supporting pediatric seizure detection. en_US
dc.language.iso en en_US
dc.publisher university of guelma en_US
dc.subject Épilepsie, Détection de crises, Apprentissage automatique, Base de Données EEG CHB-MIT, Réseau de neurones convolutif, Système intelligent. en_US
dc.title Automated Epilepsy Seizure Detection in Pediatric Using Machine Learning en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte