Afficher la notice abrégée
| dc.contributor.author |
DOGHMENE, Sarra |
|
| dc.date.accessioned |
2025-10-16T08:32:10Z |
|
| dc.date.available |
2025-10-16T08:32:10Z |
|
| dc.date.issued |
2025 |
|
| dc.identifier.uri |
https://dspace.univ-guelma.dz/jspui/handle/123456789/18271 |
|
| dc.description.abstract |
Epilepsy is a prevalent neurological disorder marked by recurrent and unpredictable seizures. In pediatric patients, early and accurate detection is critical to enabling timely medical intervention and improving long-term health outcomes. This thesis presents the development of an automated system for epileptic seizure detection in children using machine learning techniques. The proposed approach leverages a one-dimensional convolutional neural network (1D-CNN) model to analyse and classify CHB-MIT EEG data for the detection of ictal events. The system demonstrates high performance, achieving an accuracy of 97%, sensitivity of 97.03% and specificity of 96.83%. These results indicate the model’s strong ability to distinguish between ictal and preictal states, with a low false positive rate (3.17%) and false negative rate (2.97%). The results are promising and highlight the potential of the proposed system in supporting pediatric seizure detection. |
en_US |
| dc.language.iso |
en |
en_US |
| dc.publisher |
university of guelma |
en_US |
| dc.subject |
Épilepsie, Détection de crises, Apprentissage automatique, Base de Données EEG CHB-MIT, Réseau de neurones convolutif, Système intelligent. |
en_US |
| dc.title |
Automated Epilepsy Seizure Detection in Pediatric Using Machine Learning |
en_US |
| dc.type |
Working Paper |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée