Dépôt DSpace/Manakin

Reconnaissance des dialectes algériens avec des modèles de langage fine-tunés

Afficher la notice abrégée

dc.contributor.author ROUABHIA, NOR EL HOUDA
dc.date.accessioned 2025-10-16T08:28:25Z
dc.date.available 2025-10-16T08:28:25Z
dc.date.issued 2025
dc.identifier.uri https://dspace.univ-guelma.dz/jspui/handle/123456789/18270
dc.description.abstract Sentiment analysis has experienced a significant resurgence of interest with the rise of artificial intelligence, particularly in studying opinions expressed on social media. This thesis aims to address the challenges related to the limited availability of annotated data in Algerian dialect and to improve model accuracy in sentiment detection. To this end, fine-tuning was applied to six pre-trained language models (AraBERT, CAMeLBERT, QARiB, mBERT, XLM, DistilBERT) for binary classification (positive/negative). The QARiB model achieved the best results with an accuracy of 91.1%. A cross-evaluation on Moroccan and Tunisian dialect corpora was conducted to assess the models’ generalization ability. This work makes a significant contribution to the automatic processing of the Algerian dialect and paves the way for future research on multi-dialectal models en_US
dc.language.iso fr en_US
dc.publisher university of guelma en_US
dc.subject Dialecte algérien, Analyse de sentiments, Fine-tuning, Modèles de langage pré-entraînés (LLMs) en_US
dc.title Reconnaissance des dialectes algériens avec des modèles de langage fine-tunés en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte