Dépôt DSpace/Manakin

Large Language Models pour Les Systèmes de Recommandation

Afficher la notice abrégée

dc.contributor.author ZERGUINE, NADA
dc.date.accessioned 2025-10-16T08:08:28Z
dc.date.available 2025-10-16T08:08:28Z
dc.date.issued 2025
dc.identifier.uri https://dspace.univ-guelma.dz/jspui/handle/123456789/18268
dc.description.abstract With the growing importance of information personalization, it has become essential to develop recommendation systems capable of fully leveraging the richness of available textual content. This study proposes the use of Large Language Models (LLMs) in this context, through the development of a book recommendation system based on semantic similarity modeling between metadata and generated summaries. To achieve this goal, five pre-trained models from the Sentence-Transformer family were employed, all of which were fine-tuned to better adapt to the specific task context. Evaluation results showed that the all-MiniLM-L6 model achieved remarkable performance, reaching a recall score of approximately 99.69% when recommending ten books. These findings highlight the strong potential of LLMs in building intelligent, interactive, and scalable recommendation systems. en_US
dc.language.iso fr en_US
dc.publisher university of guelma en_US
dc.subject Systèmes de recommandation, LLMs, Fine-tuning, Sentence-Transformers, Recommandation basée sur le contenu, Personnalisation. en_US
dc.title Large Language Models pour Les Systèmes de Recommandation en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte