Afficher la notice abrégée
| dc.contributor.author |
KOUADRIA, AMINE |
|
| dc.date.accessioned |
2025-10-16T08:00:09Z |
|
| dc.date.available |
2025-10-16T08:00:09Z |
|
| dc.date.issued |
2025 |
|
| dc.identifier.uri |
https://dspace.univ-guelma.dz/jspui/handle/123456789/18266 |
|
| dc.description.abstract |
This study is situated within the context of the digital transformation of medical records and aims to automate the summarization of clinical notes to support clinical decision-making. The main objective is to develop a model capable of generating coherent and factual summaries from the discharge summaries of the MIMIC-IV dataset. The adopted methodology is based on the fine-tuning of the LongT5 model, chosen for its ability to process very long text sequences. Particular attention was given to data preproces- sing, notably the generation of coherent and precise target summaries to ensure high-quality supervision. The adaptation of the pre-trained model was then efficiently performed using the LoRA (Low-Rank Adaptation) method. Our final model, named MedSum-LongT5, achieves solid performance with scores of 52.6% for ROUGE-1, 35.3% for ROUGE-2, and 42.9% for ROUGE-L. These results signifi- cantly outperform non-specialized baseline models, validating the effectiveness of the approach. Qualitative analysis conf |
en_US |
| dc.language.iso |
fr |
en_US |
| dc.publisher |
university of guelma |
en_US |
| dc.subject |
Automatisation de l’analyse des dossiers médicaux pour une prise de décision clinique optimisée |
en_US |
| dc.title |
Automatisation de l’analyse des dossiers médicaux pour une prise de décision clinique optimisée |
en_US |
| dc.type |
Working Paper |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée