Dépôt DSpace/Manakin

Automatisation de l’analyse des dossiers médicaux pour une prise de décision clinique optimisée

Afficher la notice abrégée

dc.contributor.author KOUADRIA, AMINE
dc.date.accessioned 2025-10-16T08:00:09Z
dc.date.available 2025-10-16T08:00:09Z
dc.date.issued 2025
dc.identifier.uri https://dspace.univ-guelma.dz/jspui/handle/123456789/18266
dc.description.abstract This study is situated within the context of the digital transformation of medical records and aims to automate the summarization of clinical notes to support clinical decision-making. The main objective is to develop a model capable of generating coherent and factual summaries from the discharge summaries of the MIMIC-IV dataset. The adopted methodology is based on the fine-tuning of the LongT5 model, chosen for its ability to process very long text sequences. Particular attention was given to data preproces- sing, notably the generation of coherent and precise target summaries to ensure high-quality supervision. The adaptation of the pre-trained model was then efficiently performed using the LoRA (Low-Rank Adaptation) method. Our final model, named MedSum-LongT5, achieves solid performance with scores of 52.6% for ROUGE-1, 35.3% for ROUGE-2, and 42.9% for ROUGE-L. These results signifi- cantly outperform non-specialized baseline models, validating the effectiveness of the approach. Qualitative analysis conf en_US
dc.language.iso fr en_US
dc.publisher university of guelma en_US
dc.subject Automatisation de l’analyse des dossiers médicaux pour une prise de décision clinique optimisée en_US
dc.title Automatisation de l’analyse des dossiers médicaux pour une prise de décision clinique optimisée en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte