Dépôt DSpace/Manakin

SmartEpiStock: An AI-Driven Solution for Warehouse Monitoring

Afficher la notice abrégée

dc.contributor.author HARIZI, RANA
dc.date.accessioned 2025-10-16T07:53:43Z
dc.date.available 2025-10-16T07:53:43Z
dc.date.issued 2025
dc.identifier.uri https://dspace.univ-guelma.dz/jspui/handle/123456789/18264
dc.description.abstract This dissertation introduces SmartEpiStock, an innovative solution for grain silo monitor ing based on the integration of three key technologies: the Internet of Things (IoT), Deep Learning, and ontologies. The system is designed to optimize grain preservation by moni toring storage conditions in real time such as temperature, humidity, and CO, automatically detecting anomalies using a MobileNetV3 model trained on grain images, and assessing risks through logical rules embedded in a semantic ontology. An intuitive mobile application en ables users to view alerts and silo status, thereby improving farmers’ responsiveness. The proposed approach overcomes the limitations of traditional storage methods by combining perception, analysis, and reasoning into a smart, autonomous, and scalable system. en_US
dc.language.iso en en_US
dc.publisher university of guelma en_US
dc.subject SmartEpiStock: An AI-Driven Solution ,Warehouse Monitoring en_US
dc.title SmartEpiStock: An AI-Driven Solution for Warehouse Monitoring en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte