Dépôt DSpace/Manakin

Prédiction des maladies d’insuffisance cardiaque en utilisant des modèles de Deep Learning

Afficher la notice abrégée

dc.contributor.author BOUAOUNE, ZAHRA
dc.date.accessioned 2025-10-16T07:41:31Z
dc.date.available 2025-10-16T07:41:31Z
dc.date.issued 2025
dc.identifier.uri https://dspace.univ-guelma.dz/jspui/handle/123456789/18261
dc.description.abstract Heart failure is considered one of the major challenges in the medical field due to its severity and increasing prevalence. In this project, our objective was to develop an artificial intelligence model capable of predicting heart failure cases by combining ECG images with clinical data. To achieve this, we employed Graph Neural Networks (GNN), particularly the GCN and GAT models. Patients and their data were represented as a graph structure to effectively exploit the relationships between them. The experimental results showed that the GCN model delivered better performance compared to the other models used. This work highlights the effectiveness of integrating visual and clinical medical data within a graph-based approach and paves the way for broader adoption of these techniques in medical decision support systems. en_US
dc.language.iso fr en_US
dc.publisher university of guelma en_US
dc.subject Insuffisance cardiaque, Intelligence artificielle, Graph Neural Networks, ECG, Données cliniques, Prédiction. en_US
dc.title Prédiction des maladies d’insuffisance cardiaque en utilisant des modèles de Deep Learning en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte