Dépôt DSpace/Manakin

L’optimisation de la qualité d’image grâce à une approche innovante

Afficher la notice abrégée

dc.contributor.author AIMEUR, AMINA DJIHANE
dc.date.accessioned 2025-10-15T14:16:26Z
dc.date.available 2025-10-15T14:16:26Z
dc.date.issued 2025
dc.identifier.uri https://dspace.univ-guelma.dz/jspui/handle/123456789/18259
dc.description.abstract In ResDiff, we introduce a groundbreaking method for image super-resolution that harnesses the strengths of two complementary techniques : the convolutional network ESPCN and the probabilistic diffusion model DDPM. Unlike conventional approaches that directly process low-resolution (LR) images, ResDiff utilizes a two-phase method. First, ESPCN creates an initial high-resolution (HR) image, concentrating on the reconstruction of low-frequency components. Next, DDPM enhances this initial output by reintroducing the missing high-frequency details through a residual process. This combined strategy not only improves the overall quality of the reconstructed image but also provides a more precise depiction of complex details. This refinement is performed using a conditional U-Net, guided by the upsampled LR image, injected noise, and the diffusion timestep, all encoded through dedicated embeddings. Additionally, ResDiff incorporates a guided optimization strategy based on a hybrid loss function (MSE + FFT + DWT), applied within the ESPCN. This guidance brings external analytical features to the learning process, combining pixel-level supervision, global frequency awareness, and multi-scale structural cues. As a result, ResDiff generates visually faithful, high-quality images while maintaining a controlled computational complexity. en_US
dc.language.iso fr en_US
dc.publisher University of Guelma en_US
dc.subject Super-résolution d’image, réseau neuronal convolutif CNN, modèles de diffusion probabilistes, prédiction initiale, affinement en_US
dc.title L’optimisation de la qualité d’image grâce à une approche innovante en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte