Afficher la notice abrégée
dc.contributor.author |
AFIFI, Chaima |
|
dc.date.accessioned |
2025-07-15T10:10:47Z |
|
dc.date.available |
2025-07-15T10:10:47Z |
|
dc.date.issued |
2025-07-08 |
|
dc.identifier.uri |
https://dspace.univ-guelma.dz/jspui/handle/123456789/17410 |
|
dc.description.abstract |
Business Processes(BP)constitutetheheartofInformationSystems(IS)ofmodern
organizations. Thus,theyareintensivelyutilized,bothinthemanagementofvarious
companies’ resourcesandindecision-makingandstrategicalignmentactivities.The
abstract specifications (or models) expressing thebusinesslogicbehindtheBPsarees-
sentialconceptualtoolsusefulforvarioustasks,varyingformmodeling,analysis,moni-
toring andmaintenance.However,withthespectacularincreaseinthevolumeofdata
handled duringthelifecycleofBPs,whichisoftenheterogeneousinnature,conven-
tional approachesformodelingandminingBPmodelsprovetobeineffective,hindering
decision-making actions.
Toovercometheselimitations,inthisthesisweleveragethelatestadvancementsachieved
in theAIareainordertoimprovedecisionsupportsystemsinthefieldofBPsmanage-
ment.Thefirstcontributionofthisthesisconsistsofaconceptualframework,calledDSS
for BP(DSS4BP),whichallowsconstructingaKnowledgeGraph(KG)thatrepresents
the datamanipulatedbytheBPsandtheirlinks.TheconstructedKGispoweredbya
graphical capsuleneuralnetwork,anditspurposeistoenablepredictiveanalysisoffu-
ture activitiesduringtheprogressionofaBP.ThisDSS4BPisbasedontheG-CAPS-NN
architecturetrainedtodiscovertheKG-BP.ThisKGexcelsincapturingcomplexde-
pendencieswithintheactivityflowscontainedinthedifferentBPsspecifications.Thus,
the developedgraphpromotesahighpredictionoffutureeventsandadeepcontextual
understanding ofBPvariationsandevolution.Oursecondcontributionisachat-bot
named BPforDecisionSupportSystem(BP-DSS3),whichrefinestheGPT-3.5-turbo
chat-bottoassistBPmanagedmakingmoreinformeddecisions.ThisBP-DSS3chat-bot
leveragesdeeplearningtechniquestoprovidepersonalizedanddomain-specificdecision
support.Afterthetrainingphase,itachievesahighlevelofprecisionandaccuracy
when managingreal-worldscenarios,suchasAlignmentwithOrganizationalObjectives
(AOO)andRiskManagementandContingencyPlanning(RMCP).
The experimentsareconductedbasingonreal-worlddata,thetwoproposedframe-
workshavedemonstratedsignificantimprovementsintermsofefficiency,adaptability,
and performancecomparedtotraditionalapproaches.DSS4BPenablesorganizationsto
proactivelyidentifyinefficienciesandpredictfutureoutcomesofdeployedbusinesspro-
cesses, whileBP-DSS3significantlyimprovesdecision-makingbyprovidingactionable
and domain-specificinformation. |
en_US |
dc.language.iso |
en |
en_US |
dc.subject |
Artificial Intelligence,BusinessProcess,BusinessProcessModel,Caps- net, Chat-bots,DecisionMaking,EventLogs,GPT-3.5-turbo,KnowledgeGraphs. |
en_US |
dc.title |
DeployingArtificialIntelligencetechniquesfor SupportingDecisionsintheBusinessProcess Area |
en_US |
dc.type |
Thesis |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée