Thèses en ligne de l'université 8 Mai 1945 Guelma

Un Système de Détection D’Intrusion pour les Smart Grids

Afficher la notice abrégée

dc.contributor.author ZITOUNI, Nada
dc.date.accessioned 2024-12-03T08:01:02Z
dc.date.available 2024-12-03T08:01:02Z
dc.date.issued 2024
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/16500
dc.description.abstract Traditional power grids, with one-way communication, lack flexibility and efficient fault management. On the other hand, Smart Grids integrate advanced technologies, allowing bidirectional energy management and better adaptation to needs, while optimizing the integration of renewable energies. However, their interconnection makes them vulnerable to cyberattacks, which can lead to outages and risks for critical infrastructures. Securing these networks is therefore essential. This thesis proposes an intrusion detection system based on machine learning, combining CNN and LSTM, to improve the security of Smart Grids. Tested on the KDD99 dataset, the model showed good performance in terms of accuracy, outperforming existing methods. en_US
dc.language.iso fr en_US
dc.publisher University of Guelma en_US
dc.subject Smart Grid, an intrusion detection system, Deep Learning, cyberattacks. en_US
dc.title Un Système de Détection D’Intrusion pour les Smart Grids en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte