Thèses en ligne de l'université 8 Mai 1945 Guelma

A code refactoring and machine learning based approach for the detection of PHP malware

Afficher la notice abrégée

dc.contributor.author MRABET, OUSSAMA
dc.date.accessioned 2024-12-02T13:12:24Z
dc.date.available 2024-12-02T13:12:24Z
dc.date.issued 2024
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/16482
dc.description.abstract The proliferation of malware has necessitated advanced techniques for detection and prevention. This research investigates the impact of refactoring PHP code on the effectiveness of machine learning algorithms in detecting malware. By manipulating the PHP Abstract Syntax Tree (AST), various refactoring patterns were applied to generate a cleaner code base. The study compares the performance of multiple machine learning models, including Bernoulli Naive Bayes, KNeighbors, Decision Tree, Logistic Regression, SVM, Random Forest, AdaCost, and Gradient Boosting Decision Trees, before and after code refactoring. Results indicate significant improvements in recall, precision, accuracy, and F1 score post-refactoring, demonstrating the potential of AST-based code manipulation in enhancing malware detection. en_US
dc.language.iso en en_US
dc.publisher University of Guelma en_US
dc.subject PHP malware detection, Code refactoring, Machine learning en_US
dc.title A code refactoring and machine learning based approach for the detection of PHP malware en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte