Thèses en ligne de l'université 8 Mai 1945 Guelma

Apprentissage Profond pour identifier les cellules cancéreuses dans des images médicales

Afficher la notice abrégée

dc.contributor.author BOUGRINE, SOUFIANE
dc.date.accessioned 2024-12-02T13:08:54Z
dc.date.available 2024-12-02T13:08:54Z
dc.date.issued 2024
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/16481
dc.description.abstract Brain tumors are a complex and dangerous form of cancer, where early diagnosis is crucial to improving patients’ chances of survival. Traditionally, doctors have relied on clinical examinations and medical imaging techniques such as MRI. However, these methods, although effective, remain subjective and dependent on human expertise, which can lead to variations in diagnoses. The use of computer-aided diagnostic systems, notably via deep learning techniques, makes the process more objective, reproducible and accurate. These systems are based on convolutional neural networks (CNNs) capable of detecting complex patterns in medical images. In this work, we proposed a brain tumor classification system ,we exploit transfer learning, where the ResNet50 model was used as a base model reinforced by the Convolutional Block Attention Module (CBAM) . This module enables the model to focus on the most relevant regions of the images, thus improving tumor detection. We also applied data pretreatment techniques to improve model robustness. en_US
dc.language.iso fr en_US
dc.publisher University of Guelma en_US
dc.subject Brain tumors , Deep learning , Convolutional neural networks (CNN), Transfer learning, ResNet50, CBAM attention module, Magnetic resonance imaging (MRI). en_US
dc.title Apprentissage Profond pour identifier les cellules cancéreuses dans des images médicales en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte