Thèses en ligne de l'université 8 Mai 1945 Guelma

Détection et Analyse de l’Engagement des Étudiants à l’aide du Suivi Oculaire

Afficher la notice abrégée

dc.contributor.author TOUAHRI, SIRINE
dc.date.accessioned 2024-12-02T12:25:33Z
dc.date.available 2024-12-02T12:25:33Z
dc.date.issued 2024
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/16465
dc.description.abstract Understanding learner engagement is a key principle in education. It helps adapt teaching methods and educational content to maximize the effectiveness and success of each student. Various techniques have been proposed in the literature. In this work, we focus on integrating the eye tracking model as a tool for extracting different ocular metrics to detect learner engagement. The first objective of this work is to propose a structure for presenting educational content. This structure aims to maximize the amount of relevant information captured by the model. The second objective is to detect moments of learner engagement during the learning process. Machine learning algorithms, such as Random Forest and XGBoost, have been applied to detect engagement in real-time. All these proposals have been implemented in our E-track Learning system. This study opens new perspectives for personalized teaching and continuous content adaptation, enabling real-time feedback and more tailored learning experiences for students. en_US
dc.language.iso fr en_US
dc.publisher University of Guelma en_US
dc.subject Eye-tracking, Eye movement, Engagement, Effective attention, Visual behavior, Fixation, Saccade. en_US
dc.title Détection et Analyse de l’Engagement des Étudiants à l’aide du Suivi Oculaire en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte