Thèses en ligne de l'université 8 Mai 1945 Guelma

Enhancing Security in the Internet of Medical Things: A Machine Learning Approach for Intrusion Detection Systems

Afficher la notice abrégée

dc.contributor.author BENSAADA, MANAR
dc.date.accessioned 2024-11-28T14:10:31Z
dc.date.available 2024-11-28T14:10:31Z
dc.date.issued 2024
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/16460
dc.description.abstract The Internet of Medical Things (IoMT) revolutionizes healthcare by enabling real-time monitoring and remote care but introduces significant security vulnerabilities. This thesis proposes an intrusion detection system (IDS) using the XGBoost algorithm to address these vulnerabilities. Utilizing the WUSTL-EHMS-2020 dataset, which integrates network flow metrics and patient biometric data, our model demonstrates superior performance with 99.11% accuracy, 98.05% recall, and a prediction time of 0.02 seconds. Comparative analysis with other machine learning models underscores the effectiveness of our approach. The results highlight the potential of ensemble learning methods in enhancing IoMT security, ensuring the protection of sensitive medical data and patient safety in interconnected healthcare environments en_US
dc.language.iso en en_US
dc.publisher University of guelma en_US
dc.subject Intrusion Detection, IoMT, WUSTL-EHMS-2020, XGBoost, Machine learning en_US
dc.title Enhancing Security in the Internet of Medical Things: A Machine Learning Approach for Intrusion Detection Systems en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte