Thèses en ligne de l'université 8 Mai 1945 Guelma

Novel Existence and Uniquenss results for Seqential Fractional Neutral Functional Differential Equations

Afficher la notice abrégée

dc.contributor.author AOUISSI, Sifeddine
dc.date.accessioned 2024-11-28T08:17:54Z
dc.date.available 2024-11-28T08:17:54Z
dc.date.issued 2024
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/16423
dc.description.abstract This work was devoted to the study of the existence and uniqueness of solutions for two classes of sequential fractional neutral functional differential equations. The first category is the Caputo-Hadamard type, while the second is the ψ-Caputo operator type. The method used to study this type of equation depends on converting the equation to an integral equation before using the appropriate fixed point theory. Banach's fixed point theorem, a nonlinear alternative of the Leray-Schauder type, and Krasnoselski's fixed point theorem are used to obtain the desired results. Finally, examples illustrating the main results are presented. en_US
dc.language.iso en en_US
dc.publisher University of Guelma en_US
dc.subject Novel Existence ,Uniquenss results , Seqential Fractional Neutral Functional Differential Equations en_US
dc.title Novel Existence and Uniquenss results for Seqential Fractional Neutral Functional Differential Equations en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte