Thèses en ligne de l'université 8 Mai 1945 Guelma

Non-Periodic Boundary Value Problem for a fractional differential equation of the Jerk type

Afficher la notice abrégée

dc.contributor.author GHELLAB, AMIRA
dc.date.accessioned 2024-11-28T08:07:40Z
dc.date.available 2024-11-28T08:07:40Z
dc.date.issued 2024
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/16417
dc.description.abstract n this work, we consider a model of the Jerk problem of fractional order in the G-Caputo sense with non periodic conditions. Firstly, we establish the existence and uniqueness of the solution, which is achieved via the Schauder fixed point theorem and Banach contraction principle. Moreover, we explore the stability of the solution to our problem in Ulam-Hyers and Ulam-Hyers–Rassias sense. Finally, we provide a numerical example in order to illustrate the obtained results. en_US
dc.language.iso en en_US
dc.publisher University of Guelma en_US
dc.subject : Jerk problem, G-Caputo fractional derivative, Schauder fixed point theorem, Banach contraction principle, Ulam-Hyers stability, Ulam-Hyers–Rassias stability en_US
dc.title Non-Periodic Boundary Value Problem for a fractional differential equation of the Jerk type en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte