Thèses en ligne de l'université 8 Mai 1945 Guelma

Détection des maladies des pommiers sur les branches

Afficher la notice abrégée

dc.contributor.author Touahri, Mohamed anis
dc.date.accessioned 2023-11-28T09:24:39Z
dc.date.available 2023-11-28T09:24:39Z
dc.date.issued 2023
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/15046
dc.description.abstract This master’s thesis focuses on the detection of diseases on apple tree branches using artificial intelligence (AI). The aim of this study is to develop an intelligent sys- tem that can automatically detect and segment diseases on apple tree branches based on image analysis. Traditional manual detection methods are time-consuming, costly, and prone to human errors. By leveraging advancements in machine learning, image processing, and deep learning algorithms, an AI-based system can provide accurate and real-time information about the health status of apple trees, enabling farmers to take preventive measures and optimize their crop production. The proposed system combines machine learning techniques with image analysis and data processing to assist farmers in maintaining the health of their trees and reducing crop losses. This thesis presents the design, implementation, and evaluation of the system, demonstra- ting its effectiveness in disease detection on apple tree branches. en_US
dc.language.iso fr en_US
dc.publisher University of Guelma en_US
dc.subject Artificial Intelligence, Disease Detection, Apple Trees, Image Ana- lysis, Nectria cenabrina, Machine Learning, Crop Health en_US
dc.title Détection des maladies des pommiers sur les branches en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte