Thèses en ligne de l'université 8 Mai 1945 Guelma

Détection Automatique de l’Engagement Émotionnel dans un Environnement d’Apprentissage Humain en Utilisant les Techniques du Machine Learning

Afficher la notice abrégée

dc.contributor.author SOUALA, Akram Seyf Eddine
dc.date.accessioned 2023-11-28T08:59:32Z
dc.date.available 2023-11-28T08:59:32Z
dc.date.issued 2023
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/15043
dc.description.abstract Emotions play a central role in human interaction and understanding, and their accurate detection has a significant impact in fields such as education, mental health, and user in- terfaces. Studies have shown that emotional engagement is crucial in improving learning outcomes in online learning platforms. In this work, we propose an approach for the automatic detection of learners’ emotional engagement in online learning platforms. The proposed approach is based on analyz- ing learners’ feedback to detect their emotions. Support Vector Machines (SVM), Naive Bayes classification (NB), and the Bidirectional Encoder Representations from Transform- ers (BERT) model have been used in emotion detection. The BERT model has shown great capability in detecting emotions from natural language. en_US
dc.language.iso fr en_US
dc.publisher University of Guelma en_US
dc.subject Emotional engagement, BERT, SVM, NB, Natural language, Automatic de- tection. en_US
dc.title Détection Automatique de l’Engagement Émotionnel dans un Environnement d’Apprentissage Humain en Utilisant les Techniques du Machine Learning en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte