Thèses en ligne de l'université 8 Mai 1945 Guelma

Détection des Fausses Informations dans les médias (sites sociaux) a base de Transfrmateur Visue

Afficher la notice abrégée

dc.contributor.author RICHI, RACHA
dc.date.accessioned 2023-11-28T07:21:32Z
dc.date.available 2023-11-28T07:21:32Z
dc.date.issued 2023
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/15035
dc.description.abstract In recent years, synthetic face generation technology has developed rapidly, based on deepfake technology to create ultra-realistic fake images and videos. In this master thesis, our goal is to develop a fake face detection system using a specific neural network called Visual Transformer (VIT). This deep learning approach allows us to obtain a simplified representation of our data, on which we distinguish "fake" images from "real" images. Originally used in natural language processing where they proved their robustness and accuracy, VITs were later adopted in various areas of image processing and machine vision. The proposed system consists in detecting the false information received on images or videos through the detection of false faces detected. Testing of falsified faces has yielded encouraging results, but improvements can be made by continuing to learn. en_US
dc.language.iso fr en_US
dc.subject Fake News, Fake Faces, Deep Learning, Deep Fake, vision transformer. en_US
dc.title Détection des Fausses Informations dans les médias (sites sociaux) a base de Transfrmateur Visue en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte