Afficher la notice abrégée

dc.contributor.author OURAHMANE, Yousra
dc.date.accessioned 2023-11-27T09:16:27Z
dc.date.available 2023-11-27T09:16:27Z
dc.date.issued 2023
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/15031
dc.description.abstract The detection of communities in networks plays a crucial role in understanding their structures. Applying pagerank to the task of community detection in complex networks can yield good results. In this thesis, we propose a new approach to community detection based on the most influential nodes, initialized using their pageranks, and then cluste- ring them. Our approach is effective, simple, and easy to implement. We compared our algorithm with some state-of-the-art algorithms on synthetic and real networks, using evaluation measures such as Modularity Q and Conductance, and obtained acceptable results. en_US
dc.language.iso fr en_US
dc.publisher University of Guelma en_US
dc.subject Community detection, Pagerank, clustering, modularity, conductance. en_US
dc.title Détection des communautés par le PageRank en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte