Thèses en ligne de l'université 8 Mai 1945 Guelma

étection des communautés basé sur l’importance des noeuds dans le réseau

Afficher la notice abrégée

dc.contributor.author Ouartsi, Abdallah
dc.date.accessioned 2023-11-26T11:28:01Z
dc.date.available 2023-11-26T11:28:01Z
dc.date.issued 2023
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/15024
dc.description.abstract With the rise of social networks, the task of community detection in networks has become increasingly challenging in recent years. In order to detect communities, numerous algorithms have been proposed to identify dis- joint communities. The major challenge in real-world community detection is determining stable communities. Overlapping nodes belonging to multiple communities are therefore difficult to detect. In this thesis, we have developed a new community detection method based on density, where our method forms clusters through iterations using a specific similarity criterion. Our approach stands out for its efficiency, simplicity, and ease of implementation. We compared our algorithm to several state-of-the-art algorithms using real networks, eva- luating the results using the modularity measure Q. The results we obtained are considered acceptable. en_US
dc.language.iso fr en_US
dc.publisher University of Guelma en_US
dc.subject Community detection , Local density , Modularity, clustering. en_US
dc.title étection des communautés basé sur l’importance des noeuds dans le réseau en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte