Thèses en ligne de l'université 8 Mai 1945 Guelma

Détection d’objet s et deep Learning dans un trafic routier

Afficher la notice abrégée

dc.contributor.author Benkamouch, Wiam
dc.date.accessioned 2023-11-21T10:26:29Z
dc.date.available 2023-11-21T10:26:29Z
dc.date.issued 2023
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/14924
dc.description.abstract The objective is to design a system for automatic analysis of highway scenes. The road network plays a crucial role in the development of a country as it serves as the foundation for various sectors such as transportation of goods and people. Therefore, the integration of driving assistance systems is crucial in the design of new vehicles. In this work, we have developed a vehicle detection application based on video. To achieve this goal, we have implemented three algorithms. The first one is a part of machine learning (SVM), and the other two are part of deep learning (YOLOV5 and YOLOV8) en_US
dc.language.iso fr en_US
dc.publisher university of guelma en_US
dc.subject Object detection, machine learning, deep learning, learning, video. en_US
dc.title Détection d’objet s et deep Learning dans un trafic routier en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte