Afficher la notice abrégée
dc.contributor.author |
SIOUDA, Roguia |
|
dc.date.accessioned |
2022-11-17T09:29:52Z |
|
dc.date.available |
2022-11-17T09:29:52Z |
|
dc.date.issued |
2022-11-10 |
|
dc.identifier.uri |
http://dspace.univ-guelma.dz/jspui/handle/123456789/13979 |
|
dc.description.abstract |
Artificial neuralnetworkshavebeensuccessfullyappliedtoawiderangeofproblems.Inpat-
tern recognition,theyhavebeenusedinseveraltasks,suchasfeatureextraction,dimension
reduction, andclassification.Inthiswork,weproposetwoECGheartbeatclassificationmodels
based oncollaboratingdifferenttypesofneuralnetworks.Themainaimistocombinetheir
complementaryproperties.
The firstmodelusesastackedsparseautoencoder(SSAE)asfeatureextractorandasystem
of multipleMulti-layeredperceptrons(MLP)asaclassifier.Inthismodel,theentireproblem
is dividedintosimplerparts,whichareresolvedusingdifferentMLPs.Thesecondmodelalso
uses aSSAEtoextractfeaturesinadditiontotwootherdynamicfeatures.Inthismodel,the
classification isperformedbyahybridneuralmodelbasedoncombiningrandomandRBFneural
networks.
The proposedmodelsareevaluatedontheMIT-BIHarrhythmiadataset.Thetestsarebasedon
the inter-patientparadigm,inwhichthetrainingandtestdataaretakenfromdifferentpatients.
The obtainedresultsarecomparedwithsomeofthestate-of-the-artmethods. |
en_US |
dc.language.iso |
en |
en_US |
dc.subject |
Patternrecognition,classification,neuralnetworks,machinelearning,deeplearn- ing, ECGdataset. iv |
en_US |
dc.title |
Pattern recognition using collaborative neural networks |
en_US |
dc.type |
Thesis |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée