Thèses en ligne de l'université 8 Mai 1945 Guelma

Génération de données Synthétiques pour les Datasets

Afficher la notice abrégée

dc.contributor.author KLAI, AISSA
dc.date.accessioned 2022-10-19T10:46:21Z
dc.date.available 2022-10-19T10:46:21Z
dc.date.issued 2022
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/13548
dc.description.abstract The image augmentation algorithm was used to increase the number of certain images due to the unbalanced dataset and to increase the robustness of the model. In this project, CycleGAN, one of the conditional GAN models, was used to augment image data for disease detection. We have proposed to use a variant that allows image-to-image translation without the need for paired examples of transformation from source domain to target domain. It can transform the image from one domain to another without one-to-one mapping between source domain and target domain. The tests carried out on the Plantvillage dataset gave very satisfactory results. en_US
dc.language.iso fr en_US
dc.publisher université de guelma en_US
dc.subject CycleGAN, GoogLeNet, Maladies des plantes, Apprentissage profond en_US
dc.title Génération de données Synthétiques pour les Datasets en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte