Afficher la notice abrégée
dc.contributor.author |
BOUKERTOUTA, MOHAMMED AMIN |
|
dc.date.accessioned |
2022-10-17T10:49:13Z |
|
dc.date.available |
2022-10-17T10:49:13Z |
|
dc.date.issued |
2022 |
|
dc.identifier.uri |
http://dspace.univ-guelma.dz/jspui/handle/123456789/13426 |
|
dc.description.abstract |
Intrusion Detection System (IDS) is defined as a tool or software application which
monitors the network or system activities and finds if there is any malicious activity.
Outstanding growth and usage of internet raises concerns about how to communicate
and protect the digital information safely. In today’s world hackers use different
types of attacks for getting the valuable information. Many of the intrusion detection
techniques, methods and algorithms help to detect those several attacks. The aim of
this paper is to provide a complete study about the intrusion detection, types of intrusion
detection methods, types of attacks, different tools and techniques to protect
an IoT (Internet of Things) system from intrusion. We focus on using machine learning
algorithms to detect intrusion, several algorithms have been studied to reach our
conclusion. |
en_US |
dc.language.iso |
fr |
en_US |
dc.publisher |
université de guelma |
en_US |
dc.subject |
système de détection d’intrusion (IDS), L’apprentissage profond (DL), L’apprentissage automatique (ML), Classification, Régression. |
en_US |
dc.title |
Detection des intrusions basée sur l’apprentissage automatique dans les systèmes IdO (Internet des Objets) |
en_US |
dc.type |
Working Paper |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée