Thèses en ligne de l'université 8 Mai 1945 Guelma

Detection des intrusions basée sur l’apprentissage automatique dans les systèmes IdO (Internet des Objets)

Afficher la notice abrégée

dc.contributor.author BOUKERTOUTA, MOHAMMED AMIN
dc.date.accessioned 2022-10-17T10:49:13Z
dc.date.available 2022-10-17T10:49:13Z
dc.date.issued 2022
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/13426
dc.description.abstract Intrusion Detection System (IDS) is defined as a tool or software application which monitors the network or system activities and finds if there is any malicious activity. Outstanding growth and usage of internet raises concerns about how to communicate and protect the digital information safely. In today’s world hackers use different types of attacks for getting the valuable information. Many of the intrusion detection techniques, methods and algorithms help to detect those several attacks. The aim of this paper is to provide a complete study about the intrusion detection, types of intrusion detection methods, types of attacks, different tools and techniques to protect an IoT (Internet of Things) system from intrusion. We focus on using machine learning algorithms to detect intrusion, several algorithms have been studied to reach our conclusion. en_US
dc.language.iso fr en_US
dc.publisher université de guelma en_US
dc.subject système de détection d’intrusion (IDS), L’apprentissage profond (DL), L’apprentissage automatique (ML), Classification, Régression. en_US
dc.title Detection des intrusions basée sur l’apprentissage automatique dans les systèmes IdO (Internet des Objets) en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte