Thèses en ligne de l'université 8 Mai 1945 Guelma

La segmentation d’organes à partir d’images médicales

Afficher la notice abrégée

dc.contributor.author BOULEFRAKH, INES
dc.date.accessioned 2022-10-13T13:44:25Z
dc.date.available 2022-10-13T13:44:25Z
dc.date.issued 2022
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/13254
dc.description.abstract The spread of the infectious disease "Covid-19" has disrupted health and the global economy. There are several methods for the detection and diagnosis of this disease ; however, these are time-consuming, not available in all facilities, and expensive for the middle-class citizen. For this, researchers are trying to find a good alternative to these methods. In this context, computed tomography has paved the way for the detection of COVID-19 by processing digital medical images using artificial intelligence techniques. In this project we have adopted the techniques of deep learning and self-supervised learning with the aim of building a system for detecting Covid-19 disease in CT images of a suspected patient and locating the regions infected with the virus if the lat- ter and sick. This system will allow us to facilitate the task of detecting and screening for this disease and make them available to doctors or radiologists without making any effort or wasting time. en_US
dc.language.iso fr en_US
dc.publisher Université de Guelma en_US
dc.subject Images CT, Tomodensitométrie, Covid-19, Apprentissage en profon- deur, Apprentissage auto-supervisé, Segmentation, Classification. en_US
dc.title La segmentation d’organes à partir d’images médicales en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte