Thèses en ligne de l'université 8 Mai 1945 Guelma

L’apprentissage profond appliqué à la reconnaissance des anomalies mammaires

Afficher la notice abrégée

dc.contributor.author MAKHLOUF, LAZHAR
dc.date.accessioned 2022-10-13T09:42:57Z
dc.date.available 2022-10-13T09:42:57Z
dc.date.issued 2022
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/13224
dc.description.abstract Breast cancer is one of the most common malignant tumors in women, which seriously affect women’s physical and mental health and even threat to life. At present, mammography is an important criterion for doctors to diagnose breast cancer. However, due to the complex structure of mammogram images, it is relatively difficult for doctors to identify breast cancer features. At present, deep learning is the most mainstream image classification algorithm. We present the architecture of our work which will allow us to choose the hyperparameters of a convolutional neural network; the experiments of this application will be tested on the mammographic image database DDSM (The Digital Database for Screening Mammography). An optimized model for the classification of mammographic tissues according to their types (Normal / Abnormal) represents a diagnostic aid system applied to mammographic images. The proposed approach was evaluated on 6688 regions of interest extracted from mammographic tissues. en_US
dc.language.iso fr en_US
dc.publisher université de guelma en_US
dc.subject Deep learning, mammographie, hyperparramètres, classification. en_US
dc.title L’apprentissage profond appliqué à la reconnaissance des anomalies mammaires en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte