Thèses en ligne de l'université 8 Mai 1945 Guelma

Inhibiteurs du SARS-CoV-2 : Relation Quantitative Structure-Activité (QSAR)

Afficher la notice abrégée

dc.contributor.author SAIDANI SARRA, AMIROUCHE RAYANE
dc.date.accessioned 2022-10-13T07:28:19Z
dc.date.available 2022-10-13T07:28:19Z
dc.date.issued 2022
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/13194
dc.description.abstract In this work, we performed a QSAR study on a series of propiophenone-derived Anti-HIV used against SARS-CoV-2. Descriptors were obtained by Dragon software, from molecules optimized by the Gaussian-integrated B3LYP/6-31G(d, p) functional. A model based on multiple linear regression (MLR), was developed by Molegro for the prediction of pIC50s of the set of twenty inhibitors. The statistical treatment performed by Minitab shows that the statistical parameters obtained for the calibration and validation sets (correlation coefficients R=0.92, determination coefficients R2=0.84 and prediction coefficients Q2= 0.84) highlight the quality and relevance of the calculated model. Rigorous validation was considered to judge the stability and predictive capacity of this model. The goodness of fit of the developed model was verified by plotting the calculated values against the observed ones (R02 = 0.84). en_US
dc.language.iso fr en_US
dc.publisher https://www.univ-guelma.dz/ en_US
dc.subject QSAR, SARS-CoV-2, RLM, IC50, Anti-HIV en_US
dc.title Inhibiteurs du SARS-CoV-2 : Relation Quantitative Structure-Activité (QSAR) en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte