Thèses en ligne de l'université 8 Mai 1945 Guelma

Automatic classification of ECG heartbeats using deep neural networks

Afficher la notice abrégée

dc.contributor.author Sadoun, Mohammed Seghir
dc.date.accessioned 2022-10-12T08:23:34Z
dc.date.available 2022-10-12T08:23:34Z
dc.date.issued 2022-06
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/13119
dc.description.abstract Automatic ECG classification systems are a valuable tool for assisting doctors and su- pervising patients. Deep neural networks have been widely used as an alternative to the existing classification systems based on distinct feature extraction and classification phases. In this study, we propose an automatic system that classifies ECG heartbeats based on 1D convolutional neural network. To evaluate the proposed model, we perform tests on the MIT-BIH arrhythmia database and we considers four classes en_US
dc.language.iso en en_US
dc.publisher Université 08 MAI 1945 Guelma en_US
dc.subject Electrocardiography (ECG), Deep neural network, 1D Convolutional neural network (CNN) en_US
dc.title Automatic classification of ECG heartbeats using deep neural networks en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte