Thèses en ligne de l'université 8 Mai 1945 Guelma

Méthode d’optimisation pour la résolution du problème de covoiturage dynamique

Afficher la notice abrégée

dc.contributor.author TOUATI, ISLAM
dc.date.accessioned 2022-10-11T09:21:23Z
dc.date.available 2022-10-11T09:21:23Z
dc.date.issued 2022
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/12982
dc.description.abstract The dynamic ridesharing system is designed to match travelers with similar itineraries and schedules in a short period of time. These systems can provide significant social and environmental benefits by reducing the number of cars used. Effective and efficient optimization techniques that match drivers and passengers in real time are one of the necessary components of a successful dynamic ridesharing system, it is within this framework that our work falls. In this work, we propose to solve the dynamic matching problem under constraints by reinforcement learning. We have proposed a new time-based modeling that aims to minimize passenger waiting time. Our framework is validated using spatiotemporal data of real rides from the New York City Taxi public dataset as well as a simulator we developed. The results obtained support our choices and have shown the effectiveness and robustness of our approach in real time. en_US
dc.language.iso fr en_US
dc.subject Covoiturage dynamique, Appariement dynamique, Optimisation, Apprentissage par renforcement, Contraintes spatio-temporelle en_US
dc.title Méthode d’optimisation pour la résolution du problème de covoiturage dynamique en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte