Afficher la notice abrégée
dc.contributor.author |
BOUDRAA, HANEN |
|
dc.date.accessioned |
2022-10-11T08:58:08Z |
|
dc.date.available |
2022-10-11T08:58:08Z |
|
dc.date.issued |
2022 |
|
dc.identifier.uri |
http://dspace.univ-guelma.dz/jspui/handle/123456789/12956 |
|
dc.description.abstract |
This thesis in interested to the study of the maximum number of limit cycles of ordinary differential systems depending of a small parameter. More specifically, we study two classes of differential systems using the averaging theory of first and second order.
The first class studied the polynomial differentiial systems of the form
dx/dt=y-∑_(l≥1)(h^l (g1l (x)+f1l (x)y))
dy/dt=-x-∑_(l≥1)(h^l (g2l (x)+f1l (x)y)),
where f1l(x), g1l(x), f2l(x) and g2l(x) have degree 4 for each l= 1; 2; and h a small paramater.
The second class studied the polynomial Kukles differential system of the form
dx/dt=-y
dy/dt=x-h(x^2+y^2 )(A-p(x,y)),
where A > 0, the polynomial q(x, y) has degree n - 2 > 1 and q(0, 0) = 0. |
en_US |
dc.language.iso |
fr |
en_US |
dc.publisher |
université de guelma |
en_US |
dc.subject |
Cycle limite, système différentiel polynômial, système de Kukles, méthode de moyennisation. |
en_US |
dc.title |
Etude de cycles limites des champs de vecteurs polynômiaux par la méthode de moyennisation |
en_US |
dc.type |
Working Paper |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée