Afficher la notice abrégée
dc.contributor.author |
CHAKAR, RANDA |
|
dc.date.accessioned |
2022-10-11T08:14:22Z |
|
dc.date.available |
2022-10-11T08:14:22Z |
|
dc.date.issued |
2022 |
|
dc.identifier.uri |
http://dspace.univ-guelma.dz/jspui/handle/123456789/12936 |
|
dc.description.abstract |
The objective of this dissertation is the analytical and numerical study of
integro-differential equations by methods based on successive Picard
methods. Our work is the generalization of other work of degrees 1 in the
framework of nonlinear Volterra this kind of equations came from
dynamic system especially the dynamic systems summarize the seismic
problems, the cases studied in the previous work depend only on the
speed and my work depends on velocity and acceleration, we get
existence and uniqueness using Nyström adapt method to solve our
problem. |
en_US |
dc.language.iso |
fr |
en_US |
dc.publisher |
université de guelma |
en_US |
dc.subject |
équation de Voltaire, méthode de Picard, méthode de Nyström |
en_US |
dc.title |
Numerical development for an integro-diffirential equation depending in acceleration |
en_US |
dc.type |
Working Paper |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée