Thèses en ligne de l'université 8 Mai 1945 Guelma

Numerical development for an integro-diffirential equation depending in acceleration

Afficher la notice abrégée

dc.contributor.author CHAKAR, RANDA
dc.date.accessioned 2022-10-11T08:14:22Z
dc.date.available 2022-10-11T08:14:22Z
dc.date.issued 2022
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/12936
dc.description.abstract The objective of this dissertation is the analytical and numerical study of integro-differential equations by methods based on successive Picard methods. Our work is the generalization of other work of degrees 1 in the framework of nonlinear Volterra this kind of equations came from dynamic system especially the dynamic systems summarize the seismic problems, the cases studied in the previous work depend only on the speed and my work depends on velocity and acceleration, we get existence and uniqueness using Nyström adapt method to solve our problem. en_US
dc.language.iso fr en_US
dc.publisher université de guelma en_US
dc.subject équation de Voltaire, méthode de Picard, méthode de Nyström en_US
dc.title Numerical development for an integro-diffirential equation depending in acceleration en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte