Thèses en ligne de l'université 8 Mai 1945 Guelma

L’appariement des données ECG à base des séries chronologiques

Afficher la notice abrégée

dc.contributor.author HAMICI, LOUBNA
dc.date.accessioned 2022-10-11T08:10:24Z
dc.date.available 2022-10-11T08:10:24Z
dc.date.issued 2022
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/12933
dc.description.abstract The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare, facilitating the diagnosis of a large number of cardiac di seases in combination with clinical, biological or echocardiographic data. The ECG trace is seen as a series of time-related values, which can be modeled by time series. Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals. The aim of this work is to propose a time series modeled ECG data matching ap proach by using deep learning techniques. For this purpose, we have proposed an RNN-LSTM recurrent neural network model. This model has been evaluated and the results are very satisfactory. We performed deep visualization of complex 12-lead ECG data stored in InfluxDB using the Grafana Framework. en_US
dc.language.iso fr en_US
dc.publisher université de guelma en_US
dc.subject Données ECG, Appariement des séries chronologiques, RNN LSTM, Apprentissage profond, Visualisation profonde, Grafana, InfluxDB en_US
dc.title L’appariement des données ECG à base des séries chronologiques en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte