Thèses en ligne de l'université 8 Mai 1945 Guelma

Détection des communautés par une méthode d’apprentissage automatique

Afficher la notice abrégée

dc.contributor.author Boucerredj, Nadjoua
dc.date.accessioned 2022-10-10T14:25:13Z
dc.date.available 2022-10-10T14:25:13Z
dc.date.issued 2022
dc.identifier.uri http://dspace.univ-guelma.dz/jspui/handle/123456789/12902
dc.description.abstract Community detection in networks plays an essential role in understanding their structures. The application of machine learning methods to community detection tasks in complex networks has attracted sustained attention in recent years, we propose in this thesis a new community detection approach based on k-means with the initialization of central nodes according to their densities and their degrees, the choice of the number of community k is made according to the best modularity. Our approach is efficient, simple and easy to implement. We compared our algorithm with some state-of-the-art algorithms on synthetic networks and real networks, with the evaluation measure : Modularity Q, and we obtain very acceptable results. en_US
dc.language.iso fr en_US
dc.publisher université de guelma en_US
dc.subject Détection des communautés, Apprentissage Automatique, densité, modularité, K-Means. en_US
dc.title Détection des communautés par une méthode d’apprentissage automatique en_US
dc.type Working Paper en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Recherche avancée

Parcourir

Mon compte