

Faculté des Sciences & Technologie

Département de Génie Mécanique

Brochure de cours

Matière : moteurs à combustion interne Master 1 CPI

Elaborée par : Dr. KRIBES.NABIL

Année Universitaire 2015/2016

Préface

Cette brochure de cours moteurs à combustion interne est un support pédagogique pour les étudiants de troisième année licence en génie mécanique et la première année master option construction et productique industrielle, elle est élaborée selon le programme proposé dans le canevas des offres de formation et elle est inspirée divers livres dans le domaine et plus spécialement le livre de Benbbassi. A et P.A.N Savonna ainsi que d'autres travaux cités dans les références.

J'espère que nous avons apportez un plus dans ce domaine et faciliter la tâche aux étudiants afin d'enrichir et approfondir leurs connaissances.

SOMMAIRE

Historique	03
Chapitre I : Généralités sur les moteurs thermiques	05
Chapitre II : Etude d'un moteur à combustion interne	08
Chapitre III : Les combustibles	18
Chapitre IV- les cycles thermodynamiques	25
Chapitre V Calcul thermodynamique des cycles réels	37
Chapitre VI : Etude de la suralimentation	85
Bibliographie	89

HISTORIQUE

Le moteur est un organe qui transforme en travail mécanique une source d'énergie qui lui est fournie.

- Il est dit "moteur électrique" si la source d'énergie est l'électricité.
- Il est dit "moteur thermique" si la source d'énergie est donnée par un combustible.

Dans un moteur thermique si la combustion se fait à l'intérieur du moteur : on le dénomme alors moteur thermique à combustion interne.

C'est le cas de tous les moteurs thermiques employés actuellement en automobile, dont le travail mécanique est obtenu par l'explosion plus détente des gaz portés à haute pression et haute température.

La réalisation de la fonction de formation du mélange dans les moteurs à allumage commandé, depuis leur invention dans les années 1860 par Otto et Lenoir, a été dominée pendant un siècle par la solution carburée. Un carburateur créait le mélange air-combustible à partir de la dépression créée au col d'un venturi sur la veine d'air où débouchait l'alimentation en combustible. Les inconvénients évidents de cette solution (difficulté de contrôle, éloignement de la chambre, nécessité d'un papillon des gaz) ont fait rêver les concepteurs à la possibilité d'introduire le combustible directement dans la chambre de combustion. Le premier dispositif d'injection fut appliqué par Bosch en 1937 sur des moteurs d'avions puis d'autres systèmes furent développés par Gutbrod pour des moteurs d'automobiles deux temps en 1952, puis quatre temps notamment sur la Mercedes 300SL en 1956. Entre temps, de nombreuses tentatives sans industrialisation furent menées aussi bien en injection directe qu'indirecte, par les marques Jalbert, Citroën, Junkers, Deckel, Simms et Bendix, Bosch et Scintilla. Mais le surcoût induit par la solution injection n'était compensé par aucun argument valable selon les critères de l'époque. En effet, sans normes antipollution et sans crise pétrolière, les contraintes de prix et de fiabilité l'emportent. Car toute réalisation technologique efficace d'injection d'essence doit tenir compte des facteurs dosage et pulvérisation. En particulier, pour la pulvérisation, les dimensions de l'orifice d'injection doivent être aussi réduites que possible et la pression d'injection élevée. Obtenir cette pression élevée est délicat avec l'essence car ce combustible a une faible viscosité et constitue un très mauvais lubrifiant. Or le principe des pompes usuelles est de refouler avec un piston un certain volume de combustible à travers un clapet maintenu par un ressort exerçant un effort opposé au sens de refoulement et taré à la valeur de pression souhaitée pour l'injection.

Ce système n'est efficace que si les fuites entre le piston et la chemise sont faibles, ce qui est obtenu avec des jeux de fonctionnement très faibles. S'il n'y a pas de lubrification, il y a risque de grippage et déperdition d'énergie que l'on minimise avec des états de surface impeccables et

des matériaux de haute dureté. Ainsi, sauf dans le domaine particulier du moteur de compétition où les reprises rapides et le surplus de puissance donnèrent à l'injection une voie d'épanouissement, le prix et la fiabilité étaient prohibitifs.

L'injection d'essence entra donc dans le domaine public par le haut de gamme, les voitures à hautes performances telles que Mercedes avec les systèmes Bosch en Europe et Corvette avec Rochester aux États-Unis. En parallèle, des systèmes « exotiques» furent brevetés qui parfois donnèrent lieu à de petites productions, comme Puche en Allemagne dans les années 1950, avec le premier système d'injection de pré mélange. Pendant les années 1960, les systèmes d'injection indirecte mécanique commencèrent à s'implanter sur les voitures de série : Kugelfischer équipa les Peugeot 404IE puis 504 ainsi que la Lancia Flavia, les BMW 5201 et les Ford Capri 2600 Sport, tandis que Lucas développait l'injection des Triumph 2000 et Maserati 3500GT.

Chapitre I : Généralités sur les moteurs thermiques

<u>I.1 –EMPLACEMENT:</u>

Situé dans un compartiment aménagé généralement à l'avant pour les véhicules de transport de marchandises et à l'arrière pour les véhicules de transport en commun.

I.2 − *ROLE*:

Assurer la propulsion du véhicule par transformation d'une énergie thermique due à la combustion en énergie mécanique (transforme de la chaleur en mouvement).

<u>I.3 –ORGANISATION</u>:

a) Organes fixes.

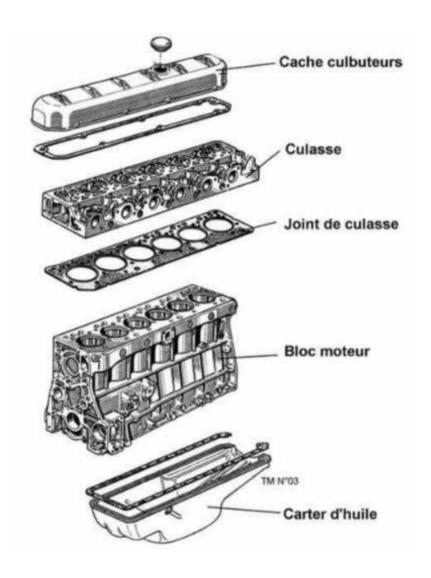


Figure I.1: Organes fixes du moteur

b) Organes mobiles (attelage mobile).

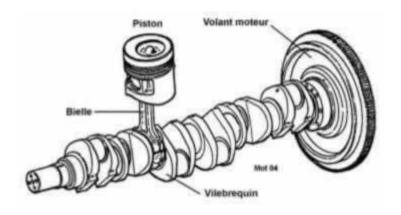


Figure I.2: Organes mobiles du moteur

<u>I.4 –ALESAGE, COURSE, CYLINDREE: DEFINITIONS:</u>

- a) Alésage : C'est le diamètre des cylindres exprimés en millimètres. Il varie de 90 à 150 mm environ.
- b) Course: C'est la distance parcourue verticalement par le piston entre le Point Mort Haut (PMH) et le Point Mort Bas (PMB) qui varie de 90 à 179'nm environ. L'alésage est généralement inférieur à la course. S'ils sont identiques, le moteur est appelé "carré". Si l'alésage est supérieur à la course, il est appelé "super-carré". La tendance actuelle est aux moteurs ayant une course supérieure à l'alésage.
- c) Cylindrée : Le volume engendré par le déplacement du piston entre ses points morts (PMH-PMB) s'appelle la cylindrée unitaire. La cylindrée unitaire multipliée par le nombre de cylindres donne la cylindrée du moteur. Elle varie de 3 à 17 litres. En raison du développement de la suralimentation, les cylindrées moyennes des moteurs modernes sont en diminution.

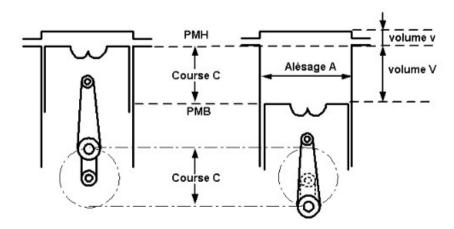


Figure I.3 : Alésage, Course et Cylindrée.

<u>I.5 – NOTION DE PUISSANCE, DE COUPLE:</u>

- a) La_puissance: C'est le travail fourni par une machine divisé par le temps mis pour le réaliser. Le calcul est le suivant P =W/T è (P =puissance, W = travail), T = temps). Pour un moteur, on calcule la puissance développée en fonction du nombre de tours/minute. L'unité de puissance est le watt avec pour multiple le kilowatt(KW) qui équivaut à 1000 watts. La puissance peut également s'exprimer en chevaux (CHDin) sachant qu'un cheval est égal à 736 watts.
- b) Le couple : Par définition, le couple est un ensemble de deux forces F, parallèles, opposées, de même intensité et distinctes d'un bras de levier. Dans un moteur à combustion interne, le couple moteur est essentiellement la force F fournie par la combustion qui donne une pression P sur la surface du piston S, d'où F = P X S

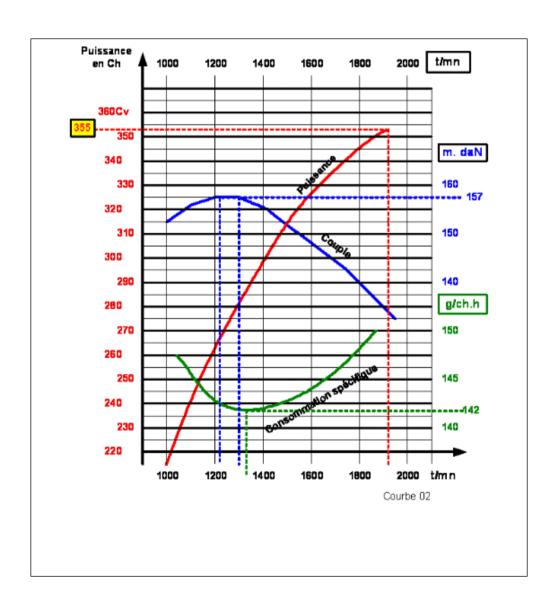


Figure I.4 : Courbes de perfectionnement du moteur.

Chapitre II Etude d'un moteur à combustion interne

I-PRINCIPE DUMOTEUR A 4 TEMPS DIESEL:

Définition du cycle à 4 temps

On appelle cycle l'ensemble des phases qui se succèdent dans le moteur, dans notre cas le cycle comprend quatre phases ou temps :

- 1. Temps admission : aspiration d'air ou de mélange air-essence.
- 2. Temps compression : de l'air ou du mélange.
- 3. Temps combustion-détente : inflammation rapide du mélange provoquant une brusque montée en pression des gaz puis leur détente.
- 4. Temps échappement : évacuation des gaz brûlés.

On constate que seul le troisième temps fournit de l'énergie, c'est le temps moteur, les trois autres temps sont résistants.

- 1) Le piston en descendant crée une baisse de pression qui favorise l'aspiration des gaz.
- 2) Le piston comprime les gaz jusqu'à ce qu'ils n'occupent plus que la chambre de combustion (pression + chaleur).

<u>ler temps</u>: ADMISSION Le piston descend du PMH vers le PMB (demi-tour0à180° rotation de vilebrequin). La soupape d'admission est ouverte, la soupape d'échappement est fermée. L'augmentation du volume du cylindre crée une dépression. Cette dépression provoque l'aspiration du mélange air/essence, formé à l'extérieur, par le carburateur ou par le système d'injection.

Lacolonnedemélangeaspiréeestfreinéepardesaccidentsdeparcourscommelefiltreàair et la soupape d'admission. Afin d'augmenter la durée de l'admission et de ce fait d'améliorer le remplissage du cylindre à70 %à90 % du son volume:

- -La soupape d'admission s'ouvre en avance par rapport au PMH (AOA = 10à45° rotation de vilebrequin). Cette avance tient compte du temps nécessaire à la levée de la soupape. L'ouverture doit être totale au moment où le piston se trouve au PMH.
- -La soupape d'admission se ferme en retard par rapport au PMB (RFA = 35à90° rotation vilebrequin). Ceretard metauprofit l'inertie des gazas pir és à grande vites se. Le mélange air/essence continue à affluer à l'intérieur du cylindre pendant une fraction de la course ascendante du piston (jusqu'à ce qu'ils soient frein és par la pression résultant de la montée du piston).

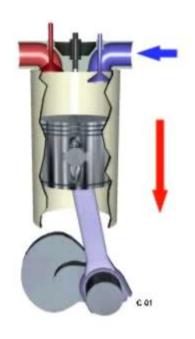


Figure II.1: Phase d'admission.

<u>2ème temps</u>: COMPRESSION Le piston monte du PMB vers le PMH (demi-tour de rotation 180 à 360° rotation de vilebrequin). Les soupapes d'admission et d'échappement sont fermées.

Par le déplacement du piston se réalise la compression du mélange dans la chambre de combustion. Grâce au rapport volumétrique de 6:1à10:1, la pression de fin de compression est de8à16 bars et la température atteint 400à500°C. La compression favorise la vaporisation du carburant et son mélange avec l'air. Ainsi est favorisée l'inflammabilité du mélange.

On ne peut pas réduire le volume de la chambre de combustion pour accroître la compression parce que la température de gaz s'élève très rapidement. Un rapport volumétrique excessif peut entraîner l'auto-allumage. L'explosion qui commence partout à la fois, est beaucoup plus violente que celle amorcée en un seul point par l'allumage ordinaire et est possible de voir la Combustion achevée avant que le piston a atteint le PMH. Pour cette raison les constructeurs adoptent des taux de compression variant de 6:1à10:1.

Enfin de course de compression, se réalise l'inflammation du mélange par une étincelle électrique. Cette étincelle, produite par le système d'allumage, amorce la combustion du mélange par un apport de chaleur.

L'étincelle électrique se produit en avance par rapport au PMH (avance à l'allumage, AA = 0 à 40° rotation de vilebrequin) afin que la combustion sous forme d'explosion atteigne sa pression maximale à 5 à 10° vilebrequin après le PMH. Cette avance tient compte de la durée qui s'écoule entre le déclenchement de l'allumage et l'apparition de l'étincelle et surtout de la durée de la combustion.

Le moment où se produit l'étincelle électrique (point d'allumage) influe sur la pression dans la chambre de combustion:

- Allumage anticipé. La pression dans le cylindre est obtenue avant que le piston soit au PMH. Cela provoque un «freinage» de la rotation et une fatigue importante des organes mécaniques.
- -Allumage retardé. La pression sur le piston est plus faible, car la descente du piston a augmenté le volume du cylindre. Comme la combustion se fait en partie dans le cylindre, le moteur chauffe.

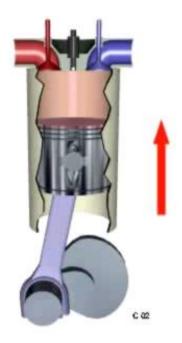


Figure II.2 : Phase de compression.

<u>3ème temps</u>: COMBUSTION-DETENTE (TEMPS MOTEUR) La combustion produit une très importante élévation de la température, 2000à2500°C, et de la pression, 30à60bars, dans la chambre de combustion. La détente des gaz agit sur le piston et crée la force motrice. Le piston est poussé du PMH vers le PMB (demi-tour 360à540° rotation de vilebrequin). La descente du piston, le temps moteur, transforme l'énergie.

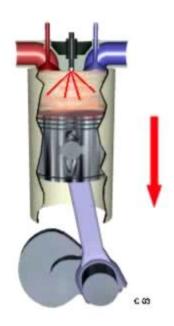


Figure II.3 : Phase de combustion –détente.

<u>4ème temps</u>: ECHAPPEMENT Le piston monte du PMB vers le PMH (demitour540à720°rotationdevilebrequin). La soupape d'admission est fermée, la soupape d'échappement est ouverte. Les gaz brûlés sont expulsés par le mouvement du piston.

Afin d'augmenter la durée de l'échappement et de ce fait d'obtenir une meilleure évacuation des gaz et donc un meilleur remplissage du cylindre:

- La soupape d'échappements 'ouvre en avance par rapport au PMB (AOE=40à90° rotation de vilebrequin). Cette avance permet à la soupape de s'ouvrir complètement lorsque le piston arrive au PMB (durée de la levée de la soupape).
- La soupape d'échappement se ferme en retard par rapport au PMH (RFE=0à30° rotation de vilebrequin).La vitesse de sortie des gaz brûlés est suffisante pour qu'ils continuent à s'échapper par inertie.

En fin de cycle, la soupape d'échappement se ferme en retard (RFE) par rapport au PMH, alors que la soupape d'admission s'ouvre en avance (AOA). Ce balancement des soupapes favorise le balayage et le refroidissement de la chambre de combustion et améliore le remplissage.

Remarque concernant le fonctionnement du moteur à piston alternatif, à essence et diesel, durant les quatre temps. Le vilebrequin ne reçoit pas de l'énergie pendant toute la durée du cycle: seul le troisième temps est moteur, les autres trois temps sont résistants.

D'ici résultent deux conséquences:

- -Le fonctionnement autonome du moteur à piston alternatif n'est pas possible qu'à partir d'un régime minimum. Le moteur à piston alternatif doit être lancé de l'extérieur à l'aide du démarreur.
- -On dispose sur le vilebrequin un volant capable d'emmagasiner de l'énergie pendant le temps

moteur et de la restituer pendant les temps résistants.

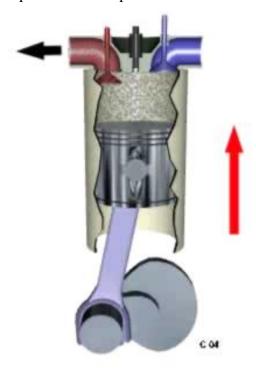


Figure II.4: Phase d'échappement.

II- Principe de fonctionnement des moteurs à deux temps

Les moteurs à deux temps peuvent être réalisés soit selon le principe des moteurs à allumage par compression (diesel) soit selon le principe des moteurs à allumage par étincelle (à carburateur). Dans ces moteurs le cycle est réalisé en deux temps ce qui correspond à un tour du vilebrequin. Le nettoyage du cylindre des gaz brulés et le remplissage de celui-ci par la charge fraiche se produisent uniquement lors du déplacement du piston à côté du PMB. Le balayage du cylindre des produits de combustion est réalisé par la charge fraiche air pour les moteurs diesels et air + combustible pour les moteurs à formation externe du mélange comprimée jusqu'à une certaine pression. Dans les moteurs de grande taille la compression de la charge fraiche et généralement assurée par un compresseur.

Selon la réalisation des processus de l'échappement admission on distingue deux types de moteurs à deux temps :

Moteurs à balayage équicourant où l'admission est assurée par des orifices (lumières) ménagés dans le cylindre. L'ouverture et la fermeture de ces orifices sont dirigées par le déplacement du piston. L'échappement peut être assuré soit par des soupapes(figure 1.6) soit par un second piston qui se déplace dans le sens inverse du premier piston (figure 1.7). dans ce dernier cas on obtient un moteur avec des pistons se déplaçant dans des sens inverses cette construction assure une bonne qualité des processus de l'échappement – admission.

Moteur à balayage transversal où l'admission et l'échappement sont assurés par des orifices ménagés dans le cylindre et dirigées par le déplacement du piston un exemple de ce type de balayage est montré sur la figure 1.8 ce type est simple de construction mais il est accompagné d'une dégradation de la qualité des processus de l'échappement – admission.

Utilisons la figure 1.6 pour étudier à titre d'exemple le principe de fonctionnement des moteurs à deux temps à formation interne du mélange et du type équicourant à orifices – soupapes. Le cycle de fonctionnement est le suivant :

-Le premier temps

Le premier temps correspond au déplacement du piston du point mort haut vers le cylindre la combustion vient juste de terminer et le processus de la détente des gaz qui représente le temps moteur vient de commencer. Peu avant l'arrivée du piston aux orifices de l'admission les soupapes de de l'échappement s'ouvrent et les produits de combustion commencent à quitter le cylindre vers le canal de l'échappement.

A ce moment la pression brutalement diminue lorsque la pression dans le cylindre devient à peu prés égale à la pression de l'air comprimé dans le récipient ou de quelque peu supérieure les orifices de l'admission s'ouvrent par le piston l'air arrivant sous pression dans le cylindre à travers les orifices de l'admission refoule le reste des produits de combustion à travers les soupapes d'échappement et remplit le cylindre on obtient ainsi le balayage (soufflage) du cylindre.

Ainsi le premier temps est consacré pour la réalisation de la combustion, la détente, l'échappement, le soufflage et le remplissage du cylindre.

-Le deuxième temps

Ce temps correspond au déplacement du piston PMB vers le PMH (figure 1.10) au début de la course du piston, les processus de l'échappement, soufflage et remplissage du cylindre se poursuivent la fin du soufflage du cylindre est déterminée par le moment de la fermeture des orifices de l'admission et des soupapes d'échappement. Les soupapes d'échappement se ferment soit en même temps avec les orifices de l'admission soit de quelque peu en avance dans les moteurs à deux la pression dans le cylindre à la fin de l'admission est de quelque peu supérieur de la pression de la pression atmosphérique et dépend de la pression dans le récipient d'admission à partir du moment de la fin de l'admission et avec la fermeture complète des orifices de l'admission par le piston. Le processus de la compression commence avant l'arrivée du piston au PMH de quelques degrés de rotation du vilebrequin. L'introduction du combustible commence à travers l'injecteur.

Ainsi le deuxième temps est consacré au début de la course du piston pour le déroulement de la fin de l'échappement le soufflage et le remplissage du cylindre et avec la suite de la course du piston pour la compression.

III.LA DISTRIBUTION

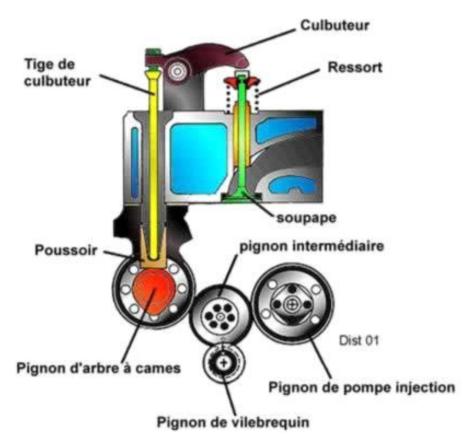


Figure II.5: La distribution.

III.1–ROLE:

Les organes de distribution permettent d'obtenir l'ouverture et la fermeture des orifices d'admission et d'échappement de chaque cylindre aux moments opportuns du cycle.

III.2–ORGANISATION:

La distribution d'un moteur comprend:

a) Un arbre à cames

Généralement en acier forgé, de forme allongée et cylindrique, comportant des excentriques appelés cames, à raison de deux par cylindre qui assurent l'ouverture des soupapes d'admission et d'échappement, La forme des cames est déterminée en fonction des caractéristiques du moteur.

b) Des poussoirs et tiges de culbuteurs

Le poussoir est un organe intermédiaire de forme cylindrique placé entre la came et la tige du culbuteur qui coulisse dans les alésages prévus dans le bloc moteur. Il transmet le mouvement de poussée provoqué par la came à la tige du culbuteur et évite à celle-ci de subir des réactions latérales provoquées par l'action de la came.

La tige de culbuteur, en acier, porte un renflement hémisphérique à ses extrémités, ce qui lui

permet de tourner autour de son axe pour éliminer l'effet des réactions dues aux poussées latérales.

c) Des culbuteurs

Le culbuteur est un petit levier oscillant monté sur un axe solidaire de la culasse. Il est actionné par la tige du culbuteur et commande par un mouvement de bascule l'ouverture de la soupape.

Un jeu de fonctionnement entre le culbuteur et la tige de soupape est fixé par le constructeur pour tenir compte de la dilatation, due à la chaleur, de cette dernière.

Ce jeu varie de 0,15 mm à 0,20 mm pour les soupapes d'admission et peut atteindre0,40 mm pour les soupapes d'échappement.

Le recalage des culbuteurs s'effectue très facilement à l'aide d'un jeu de cales.

d) Des soupapes:

La soupape présente trois parties distinctes

La tête de forme cylindrique Tronconique, elle repose sur un siège et assure l'étanchéité parfaite du cylindre dont dépend le rendement du moteur. Le collet raccorde la tête à la tige.

La tige de forme cylindrique, elle coulisse à l'intérieur d'un guide et monte dans la culasse ; elle reçoit la poussée du culbuteur. Son extrémité est usinée pour recevoir les deux demi-bagues coniques (qui bloquent de bas en haut la coupelle d'appui des ressorts de rappel de la soupape sur son siège).

Le rôle de la soupape est d'ouvrir ou de fermer le passage des gaz frais par la soupape d'admission et des gaz brûlés par la soupape d'échappement.

Les moteurs à 4 temps comportent généralement deux soupapes par cylindre (une soupape d'admission et une soupape d'échappement. Cependant certains moteurs de grosse cylindrée comportent deux soupapes d'admission et deux soupapes d'échappement).

III.3- PRINCIPEDEFONCTIONNEMENT:

L'arbre à cames entraîné par le vilebrequin commande, par l'intermédiaire des cames, poussoirs, tiges de culbuteurs et culbuteurs, l'ouverture des soupapes d'admission lors du temps "admission" et des soupapes d'échappement lors du temps "échappement" du cycle à4 temps. La fermeture des soupapes est assurée par des ressorts de rappel lorsque les cames libèrent les poussoirs.

Le cycle à 4 temps impose une ouverture et une fermeture des soupapes de chaque cylindre tous les deux tours de vilebrequin. L'arbre à cames tourne donc deux fois moins vite que le moteur. Ce résultat est obtenu par montage sur l'arbre à cames d'un pignon ayant un diamètre deux fois supérieur à celui du vilebrequin.

III.4- COMPARAISON ENTRE LE FONCTIONNEMENTDESMOTEURSAESSENCEETDIESEL

CYCLE	DIESEL	ESSENCE
Admission-1 ^{er} temps	Air seul	Mélange air+essence
Compression	Taux de compression30 à 40 bars.	Taux de compression 10 à 12 bars.
	Elévation de température 500 à	Elévation de température 320 à
2 ^{ème} temps	600°C	380°C
Temps Moteur	Combustion détente injection	Explosion commandée par une
	gazole pulvérisé.	Etincelle électrique.
3 ^{ème} temps	Auto inflammation détente des gaz	Explosion détente des gaz
1	Température des gaz de 1800°C à	Température des gaz de 2000°C à
Echappement –	Gaz peu toxiques (particules)	Gaz plus toxiques (C.O)
Consommation	215 à 300 g/kW/h	310 à 405 g/kW/h
spécifique		

<u>III.5-CLASSIFICATIONDESMOTEURSDIESEL</u>

Il existe deux catégories de moteur diesel :

a) Les Moteurs à injection directe :

La chambre de combustion est usinée dans le piston.

L'injecteur débouche directement dans la chambre de combustion, il est du type à trous (plusieurs Orifices)

Avantages:

- Rendement élevé, donc consommation assez faible.
- Bon départ à froid
- Simplicité de réalisation.

Inconvénients:

Moteur bruyant : cognement caractéristique au ralenti et à faible régime.

b) Les moteurs à injection indirecte :

Ils se regroupent en 3 familles :

- L'injection à chambre de précombustion.
- L'injection à chambre auxiliaire de réserve d'air.
- L'injection à chambre de turbulence.

L'injecteur, en principe à aiguille, pulvérise le gazole dans une préchambre située dans la culasse.

La solution la plus répandue pour les moteurs à injection indirecte est la chambre de turbulence, notamment sur les véhicules légers (Peugeot, Renault, Citroën...).

Pour ce type de moteur, un dispositif d'aide au démarrage est indispensable (bougies de préchauffage).

Avantage:

- Pression d'injection moins élevée qu'avec l'injection directe.
- Moteur moins bruyant;
- Combustion plus souple et plus rapide.
- Régimes moteurs plus élevés.

Inconvénients:

• Départ à froid impossible sans dispositif d'aide au démarrage.

ChapitreIII: Les combustibles

1.Introduction

L'énergie thermique nécessaire pour le fonctionnement du moteur est obtenue par combustion de l'oxygène de l'air atmosphérique et du combustible les combustibles utilisés dans les moteurs à combustion interne sont généralement d'origine pétrolière dans les moteurs diesels, on utilise le gaz-oil. Alors que dans les moteurs à essence on utilise de l'essence pour le déroulement normal de la combustion le combustible doit avoir certaines propriétés physiques et chimiques.

Les propriétés physiques telles que la densité et la viscosité ont une influence sur l'introduction du combustible vers le cylindre et sur la formation du mélange.

Les propriétés chimiques comme la structure et la liaison moléculaire ainsi que la rapidité d'inflammation, ont une influence sur l'introduction du combustible vers le cylindre et sur la formation du mélange.

Les propriétés chimiques comme la structure et la liaison moléculaire ainsi que la rapidité d'inflammation, ont une influence sur le processus de déclenchement de la réaction chimique de la combustion.

1.1. L'indice de cétane

Les combustibles utilisés dans les moteurs diesels sont caractérisés par l'indice (nombre) de cétane qui définit la capacité de l'auto combustible.

Dans les moteurs diesels le nombre de cétane du combustible est choisi en fonction du taux de compression de telle façon que le déclenchement de la combustion doit être assuré sur tous les régimes de fonctionnement du moteur. En particulier, la valeur du taux de compression doit assurer le lancement du moteur à froid et le fonctionnement normal du moteur à bas régimes, où la température et la pression dans le cylindre en fin de compression ne sont pas assez grandes.

1.2. L'indice d'octane

Les combustibles employés dans les moteurs à carburateur sont caractérises par un autre indice, qui est l'indice (nombre) d'octane. L'indice d'octane définit la capacité du combustible à l'anti-détonation.

Dans les moteurs à essence lorsque le nombre d'octane du combustible n'est pas mis en accord avec le taux de compression du moteur, une auto – inflammation spontanée, du mélange air+

combustible provoquée par le contact de ce mélange avec les parois chaudes de la chambre de combustion peut avoir lieu cette auto inflammation est appelée détonation elle est caractérisée par un bruit métallique.

La détonation est un phénomène négatif, elle provoque la diminution de la diminution de la puissance et l'augmentation de la consommation du combustible. Le fonctionnement prolongé du moteur sous ce phénomène n'est pas admissible elle diminue la durée de vie du moteur. D'autant plus le taux de compression est élevé d'autant plus le nombre d'octane doit être grand.

1.3. Le pouvoir calorifique inférieur du combustible(Pci)

Le pouvoir calorifique du combustible. Est la quantité de chaleur dégagée après la combustion total d'une unité de masse ou de volume de ce combustible. Il est supérieur lorsque la chaleur de condensation des produits de combustion est inclue dans le cas contraire c'est le pouvoir calorifique inférieur (Pci). Dans la théorie des moteurs à combustion interne on utilise le pouvoir calorifique inférieur puisque les produits de combustion quittent le cylindre sans avoir la possibilité de se condensés. Leur température est nettement plus élevée de la température nécessaire pour la condensation.

1.4. La composition élémentaire du combustible liquide

Dans la composition élémentaire des combustibles liquides rentre le carbone (C) l'hydrogène(H₂), l'oxygène (O₂), le souffre (S) et l'azote (N₂). Pour la commodité , dans ce qui suit, on va d'une part mener le raisonnement pour 1kg de combustible liquide et d'autre part on va designer la contenance en masse de chaque élément dans cette quantité par le symbole chimique de cet élément, c'est-à-dire :

C- va représenter C kg de carbone dans 1 kg de combustible,

H- va représenter H kg d'hydrogène dans 1 kg de combustible,

O- va représenter O kg d'oxygène dans 1 kg de combustible.

Si on néglige la participation de l'azote et du souffre dans la réaction chimique de la combustion on a donc :

C + H + O = 1kg de combustible liquide

Pour les combustibles gazeux le raisonnement se mène de la même façon, mais pour une unité de volume de ce gaz.

1.5. La quantité d'air stœchiométrique (l₀,L₀)

L'air atmosphérique nécessaire pour la combustion est introduit dans la chambre combustion durant le temps de l'admission. Les expressions qui permettent de déterminer la quantité en kg (l_0) ou en kmoles (L_0) de l'air théoriquement nécessaire pour la combustion complète de 1 kg de combustible (la quantité stœchiométrique) peuvent être obtenues sur la base des équations finales suivantes de la réaction chimique de la combustion lors de la combustion complète on suppose que le carbone et l'hydrogène rentrent en réaction chimique avec l'oxygène en formant le gaz carbonique (CO_2) et les vapeurs d'eau (H_2O):

$$C + O_2 \longrightarrow CO_2$$

$$2H_2 + O_2 \longrightarrow 2H_2O$$

Selon la première équation, pour bruler les C kg de carbone se trouvant dans 1 kg de combustible il faut avoir C/12 kmol (8/3 C kg) d'oxygène.

Et selon première équation pour bruler les H kg du combustible se trouve O/32 kmol (O kg) d'oxygène qui peut participer dans la réaction chimique.

Au total la quantité d'oxygène en kmol qu'il faut amener de l'extérieur pour bruler le 1 kg de combustible est gale à : (C/12+H/4+O/32). En kg elle est (8/3C + 8 H –O).

Sachant que 100 kmol (100 kg) d'air contient 21 kmol(23 kg) d'oxygène alors la quantité d'air nécessaire pour la combustion du 1 kg de combustible. En kmol, est :

$$L_0 = \frac{1}{0.21} \left(\frac{C}{12} + \frac{H}{4} + \frac{O}{32} \right)$$

En kg elle est:

$$l_0 = \frac{1}{0.23} \left(\frac{8}{3} C + 8H - O \right)$$

Les deux quantités son liées évidemment. A travers la masse molaire (μ_A) par :

$$l_0 = \mu_A + L_0$$

1.6. Le coefficient de l'excès d'air (λ)

La quantité de l'air introduit dans la chambre de combustion, peut être supérieure, inférieur ou égal à la quantité théoriquement nécessaire pour la combustion totale du combustible. Le rapport de la quantité réelle (l, L) de l'air introduit dans le cylindre, à la quantité (l_0, L_0) théoriquement

nécessaire pour la combustion totale de 1 kg de combustible. Est appelé coefficient de l'excès d'air (λ) .

$$\lambda = l/l_0$$

ou bien:

$$\lambda = L/L_0$$

Selon la valeur de ce coefficient, le mélange air + combustible peut être pauvre stœchiométrique ou riche ; pour :

 $\lambda > 1 : (l > l_0)$ le mélange est dit pauvre ;

 $\lambda = 1 : (l = l_0)$ le mélange est dit stœchiométrique ;

 $\lambda < 1 : (l < l_0)$ le mélange est dit riche.

La valeur du coefficient de l'excès d'air. Dépend du type de la formation du mélange et du régime de fonctionnement du moteur dans les moteurs à formation interne du mélange (les diesels) le coefficient de l'excès d'air est toujours supérieur à 1. Selon le régime de fonctionnement. Il est dans les limites suivantes : $(\lambda = 1,3....6)$

Alors que les moteurs à formation externe du mélange (moteurs à carburateur) fonctionnent avec les trois types de mélange. Selon le régime de fonctionnement, le coefficient de l'excès d'air peut être supérieur, inférieur ou égale à 1. Généralement dans ce type de moteurs $(\lambda = 0.3 \dots 1.3)$

1.7. La quantité et la composition du fluide admis dans le cylindre

La composition du fluide admis dans le cylindre, dépend du type du moteur dans les moteurs à formation interne du mélange (diesels) le fluide introduit dans le cylindre durant l'admission. Est composé de l'air seulement. Sa quantité (M_1) en kmoles est déterminé par :

$$M_1 = \lambda.L_0 + \frac{1}{\mu_c}$$

Ici le terme $(1/\mu_c)$ représentent la quantité de combustible en kmol, qui correspond à 1 kg (μ_c) est la masse molaire du combustible.

1.8. La quantité et la composition des produits de combustion

La composition et la quantité des gaz brulés lors de la combustion de 1 kg de combustible. Dépendent de la valeur du coefficient de l'excès d'air (λ) :

1° cas :
$$\lambda$$
≥1

Dans ce cas l'air est en excès le carbone et l'hydrogène ont suffisamment d'oxygène pour se brûler complètement en formant le gaz carbonique (CO_2) et les vapeurs d'eau (H_2O) a part ces deux éléments les produits de combustion dans ce cas contiennent l'azote (N_2) qui par supposition ne participe pas à la réaction chimique. Ainsi que l'excès d'oxygène (O_2) . La quantité de ces gaz (M_2) en kmoles l, est :

$$M_2 = M_{CO_2} + M_{H_2O} + M_{N_2} + M_{O_2}$$

Pour obtenir les formules nécessaires pour le calcul de la quantité de chaque élément des produits de combustion ainsi que leur quantité totale. On utilise les équations précédentes de la réaction chimique de la combustion.

Selon l'équation (1.6), C/12 kmoles de carbone se trouvant dans le combustible produira C/12 kmoles de (CO₂) c'est-à-dire :

$$M_{co_2} = \frac{C}{12}$$

Et selon l'équation (1.7) H/2 kmoles de l'hydrogène se trouvant dans le combustible , produira H/2 kmoles de (H2O) c'est-à-dire :

$$M_{H_2O} = \frac{H}{2}$$

L'azote par supposition ne participe pas à la réaction chimique et donc sa quantité en kmol dans les produit de combustion, représente 79% de la quantité de l'air admit dans le cylindre, c'est-à-dire :

$$M_{N_2}=0.79.\lambda.L_0$$

La différence entre la quantité $(\lambda.L_0)$ de l'air admis dans la réaction chimique pour la combustion complète. Représente la quantité de l'air en excès. La part de l'oxygène en volume dans l'air est 21% donc la quantité de l'oxygène en kmoles dans les produits de combustion est :

$$M_{O_2} = 021(\lambda . L0 - L0)$$

La quantité totale (M_2) des produits de combustion est la somme des quantités des composantes c'est-à-dire :

$$M_2 = \frac{C}{12} + \frac{H}{2} + \lambda \cdot L_0 - 0.21L_0$$

 2° cas : $\lambda < 1$

Dans ce cas à cause du manque de l'air la combustion du combustible ne peut pas avoir lieu une partie de l'hydrogène vont se brûler complètement pour former (CO_2) et (H_2O) l'autre partie de ces éléments, n'aura pas assez d'oxygène pour se brûler complètement et par conséquent le reste de l'hydrogène - en (H_2). A part ces composants les gaz brûlés (M_2) contiennent l'azote qui par supposition ne participe pas à la réaction chimique au total dans ce cas (M_2) est composé de :

$$M_2 = M_{co_2} + M_{H_2O} + M_{CO} + M_{H_2} + M_{N_2}$$

Pour développer les formules de calcul de la quantité total et la quantité de chaque composant des produits de combustion. On suit le même raisonnement que dans le cas précèdent.

1.9. Le coefficient des gaz résiduels (Yr)

au début de chaque cycle. Le cylindre contient une certaine quantité des produits de combustion qui n'a pas arrivé à s'échapper ces gaz sont appelés gaz résiduels pour estimer la quantité (M_r) de ces gaz par rapport à la quantité du fluide admis (M_1) on introduit un coefficient appelé coefficient des gaz résiduels (Y_r) , il représente le rapport de ces deux quantités :

$$\gamma_r = \frac{M_r}{M_1}$$

La présence des gaz résiduels dans la chambre de combustion n'est pas favorable parce qu'elle diminue le remplissage du cylindre en charge fraiche (le mélange avant la combustion est appelé charge fraiche) pour diminuer la quantité de ces gaz on utilise différents procédés par exemple :

- En effectuant un bon choix des moments de l'ouverture et de la fermeture des soupapes.
- En avançant l'ouverture et en retardant la fermeture des soupapes.
- Dans les moteurs suralimentés à la fin de l'échappement et au début de l'admission on maintient les deux soupapes ouvertes pour un certain temps. En créant ainsi un balyage du cylindre.

1.10. Le coefficient du changement moléculaire chimique (μ_0)

Selon le type du combustible après la combustion la quantité (M_2) en kmol (en volume) des produits de combustion peut être supérieure. Inférieure ou égale à la quantité (M_1) de la charge fraiche introduite dans le cylindre le rapport de ces deux quantités est dit coefficient du changement moléculaire chimique (μ_0) :

$$\mu_0 = \frac{M_2}{M_1} = 1 + \frac{\Delta M}{M_1}$$

Avec (ΔM) le changement moléculaire :

$$(\Delta M = M_2 - M_1)$$

1.11. Le coefficient de changement moléculaire réel (μ_r)

Pour tenir compte de la présence des gaz résiduels on introduit un autre coefficient qui est le coefficient qui est le coefficient de changement moléculaire réel (μ_r) avant la combustion et après le cylindre contient respectivement les quantités $(M_2 + M_r)$ le rapport de ces quantités représente le coefficient de changement moléculaire réel :

$$\mu_r = \frac{(M_2 + M_r)}{(M_1 + M_r)}$$

1.12. Les capacités calorifiques des gaz

La quantité de chaleur nécessaire pour faire augmenter la température d'une certaine quantité de gaz. D'une valeur déterminée par exemple de 1 degré est appelée capacité calorifique de ce gaz. Selon le fait que la capacité calorifique est mesurée à volume constant ou à pression constante, on obtient dans le premier cas la capacité calorifique à volume constant (C_v) et dans le second, a pression constante (C_p) . les deux sont liées à travers la constante universelle des gaz parfait (R) par :

$$C_p - C_v = R$$

Dans la théorie des moteurs à combustion interne on utilise soit les capacités calorifiques molaires : (μC_p) , (μC_v) déterminées pour une quantité de moles du gaz, soit de masse : (mC_p) , (mC_v) déterminées pour une certaine masse du gaz considéré.

Pour un mélange de gaz on utilise les capacités calorifiques moyennes molaire moyenne à pression constante d'une quantité (M_2) d'un gaz

Chapitre IV- Les cycles thermodynamiques

1. Introduction

La théorie des moteurs à combustion interne. Est basée essentiellement. Sur les lois de la thermodynamique et de la gazodynamiques (mécanique des fluides). Les moteurs à combustion interne, fonctionnent selon un cycle composé de plusieurs opérations. La réalisation de chaque opération est accompagnée de pertes thermique, gazodynamiques et mécanique. L'étude des cycles thermodynamique, offre la possibilité d'établir les chemins à suivre pour diminuer la valeur de ces pertes.

Durant l'étude des cycles thermodynamique on suppose que:

- la quantité et la composition du fluide moteur (gaz parfait) sont constant durant le cycle.
- la compression et la détente, se déroulent adiabatiquement
- la combustion est remplacée par une simple introduction de la chaleur (q_1) à partir d'une source chaude.
- les temps de l'échappement et de l'admission sont remplacés par une simple prise de la chaleur (q_2) par une source froide.

Le cycle thermodynamique est caractérisé par deux paramètre : le rendement thermique et la pression moyenne du cycle.

1.1.Le rendement thermique (η_t)

Le rendement thermique (Π_t) caractérise l'économie du cycle du point de vue transformation de la chaleur en travail mécanique. il représente le rapport de la quantité de chaleur transformée en travail mécanique (w) sur la quantité totale (q_1) de celle-ci, introduite durant le cycle:

1.2.La pression moyenne du cycle (pt)

La pression moyenne (p_t) caractérise le cycle du point de vue efficacité. Elle représente le rapport du travail mécanique (w) obtenu au cours du cycle, à la cylindré unitaire du cylindre (v_h) :

$$p_1 = \frac{w}{v_h} \tag{IV.2}$$

Avec $w = q_1 - q_2$

Pour une cylindrée unitaire donnée, d'autant plus la pression moyenne du cycle n'est grande. D'autant plus le cycle n'est efficace. la pression moyenne du cycle est liée aux dimensions principales du moteur, c'est-à-dire à la course du piston (c)et à l'alésage du cylindre (D)

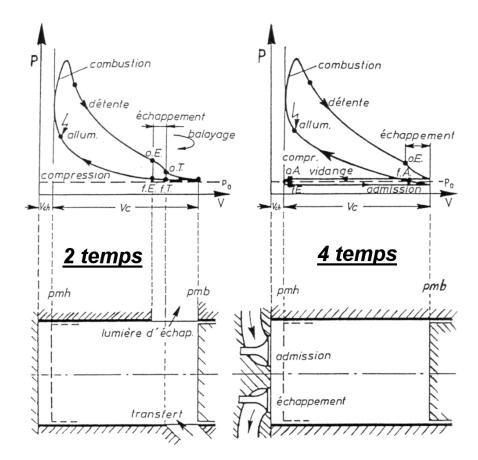


Figure IV.1: Cycles à deux et quatre temps.

A cause de l'idéalisation du cycle thermodynamique par l'hypothèse faites ci-avant, les valeurs obtenues du rendement thermique et de la pression moyenne vont correspondre évidemment, à des valeurs maximales, impossible à atteindre dans la pratique. Mais dont il faut au maximum, se rapprocher. Le but de l'étude des cycles thermodynamique, est d'une part d'établir ces valeurs sous des conditions déterminées et d'autre part, de prévoir les chemins pour leur réalisation dans la pratique. D'où la nécessite de savoir les facteurs qui ont une influence sur le rendement et la pression moyenne du cycle. Cette connaissance permet d'agir sur tel ou tel facteur pour obtenir le résultat souhaité.

Selon la méthode de l'introduction de la chaleur' les cycles thermodynamiques

Appliqués dans la théorie des moteurs à combustion interne, sont divisés en trois types de cycles:

- cycle à introduction isochore de la chaleur (cycle Otto ou de Beau de Rochas: moteurs à carburateurs)

- cycle à introduction isobare de la chaleur (cycle diesel: moteur diesel lents)

- cycle à introduction mixte de la chaleur, à volume constant et puis à pression constante (v= const.), cycle diesel: moteurs diesel rapides)

2. le cycle thermodynamique à introduction mixte de la chaleur

Pour l'étude des cycles thermodynamique, On introduit les notions suivantes :

2.1 le taux de compression (ε)

La définition de ce paramètre a été donnée auparavant. Il représente le rapport du volume (Va) du cylindre au début de la compression. Sur le volume (V_e) à la fin de la compression.

$$\varepsilon = \frac{V_a}{V_c} \tag{IV.3}$$

2.2. le taux de croissance de la pression (λp)

Le taux de croissance de la pression (λ_p) est le rapport de la pression (p_z) à la fin de l'introduction de la chaleur.sur la pression (p_c) en fin de compression :

$$\lambda_p = \frac{p_z}{p_c} \tag{IV.4}$$

2.3. Le taux de la détente postérieure (p_d)

Le taux de la détente préliminaire (p_d) représente le rapport du volume (vz) du cylindre à la fin de l'introduction de la chaleur, au volume (V_c) de celui-ci en fin de compression:

$$p_d = \frac{vz}{vc} \tag{IV.5}$$

2.4. Le taux de la détente postérieure (δ_d)

Le taux de la détente postérieure (δ_d) est le rapport du volume (V_b) du cylindre à la fin de la détente, sur le volume (V_z) du cylindre à la fin de l'introduction de la fin de la chaleur:

$$\delta_d = \frac{V_b}{V_z} \tag{IV.6}$$

2.5. L'exposant adiabatique (y)

L'exposant adiabatique (y) est défini par le rapport les capacités calorifiques, à pression constante (c_p) et volume constant (C_v) :

$$y = \frac{c_P}{c_V} \tag{IV.7}$$

Le cycle thermodynamique à introduction mixte de la chaleur est montré sur la figure IV.1. dans ce cycle, une partie de la chaleur et introduite à volume constant (q_1') et l'autre partie (q_1 '') est introduite à pression constante. Il est composé des transformations suivantes:

- -une compression adiabatique (ac).
- une introduction de la chaleur (q_1) à volume constant (cz')
- une introduction de la chaleur $(q_1 ")$ à pression constante (z 'z)

- une détente adiabatique (zb)
- une prise de la chaleur (q_2) à

Volume constant (ba)

Dans les moteurs diesels rapides. La grande parties des processus du dégagement de la Chaleur et de la formation du mélange air+ combustible, se fait au fur et à mesure de l'introduction du combustible dans le cylindre, et par conséquent, les premières portions du combustible se brulent spontanément, presque à volume constant, alors que les autres portion se brulent par la suite et presque à pression constante. pour cette raison, on suppose que les moteurs diesels rapides, fonctionnent selon le cycle à introduction mixte de la chaleur.

3.le cycle thermodynamique à introduction isochore de la chaleur

Le schéma de ce cycle est montré sur la figure IV.1. Il est composé des opérations suivantes:

- -une compression adiabatique (ac)
- une introduction de la chaleur (q_1)

A volume constant (cz) à partir d'une Source chaude.

- une détente adiabatique (zb)
- -une prise de la chaleur (q_2) à volume constant (ba) par une source froide.

Dans les moteurs à essence , le mélange est déjà préparé dans le carburateur et l'inflammation est assurée par l'étincelle et donc, la grande partie de la chaleur se dégage spontanément, presque à volume constant . pour cette raison .on suppose que les moteurs à carburateur. Fonctionnent selon le cycle à introduction de la chaleur à volume constant.

4. le cycle thermodynamique à introduction isobare de la chaleur

Ce cycle est représenté sur la figure IV.1. il est composé dans l'ordre suivant, des transformations suivantes:

- -une compression adiabatique (ac)
- une introduction de la chaleur (q_1) à volume constant (cz)
- -une détente adiabatique (zb)
- une prise de la chaleur (q_2) à volume constant (ba)

Dans les moteurs diesels lents ; c'est-à-dire qui ont des vitesse moyennes du piston relativement petite de l'ordre de $5 \ m/s$. Le dégagement de la chaleur s'effectue presque à pression constante. Pour cette raison. On suppose que ce type de moteurs, fonctionne selon le cycle à introduction de la chaleur à pression constante .

5. formules de calcul du rendement thermique

Pour développer la formule du rendement thermique. Utilisons l'expression (IV.1) en représentant les chaleurs $(q_1', q_1'', et q_2)$ en fonction des température et des capacité calorifique:

$$\prod_{t=1} - \frac{q_2}{q_1}$$

Avec

$$q_1 = q_1' + q_1'' = C_V(T_{z'} - T_c) + C_P(T_z - T_{z'})$$
(IV.8)

$$q_2 = C_V(T_b - T_a) (IV.9)$$

Alors

$$\eta_t = 1 - \frac{c_V(T_b - T_a)}{c_V(T_{z'} - T_c) + c_P(T_z - T_{z'})}$$
(IV.10)

Représentons les températures (T_zT_z , T_cT_b) en fonction de la température (T_a) en tenant compte que, dans le cylindre durant le cycle, la quantité de Kmoles du fluide est constante.

Selon la loi de la compression adiabatique (ac) on a:

$$T_C = T_{a_E y^{-1}} \tag{IV.11}$$

Selon les équations de l'état, aux points (z') et (c)

$$P_{zl}V_{zl} = RT_{zl} \tag{IV.12}$$

Et

$$P_C V_C = RT_C (IV.13)$$

Sachant que $(P_{z'}/P_e = \lambda_p)$; $(V_{z'} = V_c)$ et à l'aide de l'expression (2.11) on déduit la température $(T_{z'})$

$$T_{z'} = \lambda_p . T_a \varepsilon^{y-1}$$
 (IV.14)

A partir des équations de l'état au point (z'). (Expression (IV. 12)) et au point (z):

$$P_z V_z = RT_z \tag{IV.15}$$

Sachant que $(V_z/V_{z\prime} = V_z/V_e = P_d)$ avec l'expression (IV.14) on obtient la température (T_z)

$$T_z = P_d. \lambda_p. T_{a^{\varepsilon^{\gamma-1}}}$$
 (IV.16)

Selon la loi de la détente adiabatique (zb)

$$T_b = T_z \left(\frac{V_z}{V_b}\right)^{\gamma - 1} \tag{IV.17}$$

Ou bien

$$T_b = T_z \left\{ \left(\frac{V_z}{V_c} \right) \middle| \left(\frac{V_c}{V_b} \right) \right\}^{\gamma - 1}$$

Avec $(V_z/V_c = P_d et V_c/V_b = 1/\varepsilon)$ et l'expression (2,16) on déduit la température (T_b)

$$T_b = \rho_{d\gamma} \lambda_p T_a \tag{IV.18}$$

Le remplacement des températures (T_e , T_z , T_b) à partir des expressions (IV.11), (IV.14), (IV.16) et (IV.16) dans la formule (IV.10) du rendement thermique. Nous donne :

$$\eta_{t=1} - \frac{C_V(\rho_{d^{\gamma}}\lambda_p T_a - T_a)}{C_V(\lambda_p T_{a^{\varepsilon^{\gamma-1}}} - T_{a^{\varepsilon^{\gamma-1}}}) + C_P(\rho_d \lambda_p T_{a^{\varepsilon^{\gamma-1}}} - \lambda_p T_{a^{\varepsilon^{\gamma-1}}})}$$

Après quelques simples simplifications. Et en remplaçant ($C_pC_v=\Upsilon$) on obtient la formule » de calcul du rendement thermique du cycle à introduction mixte de la chaleur:

$$\prod_{t=1-\frac{1}{\varepsilon^{\gamma-1}(\lambda_p-1)+\gamma.\lambda_p(P_d-1)}} \frac{1}{\lambda_p p_d \gamma-1} (IV.19)$$

5.1. Premier cas particulier: la formule du rendement thermique du cycle à introduction isochore de la chaleur

La formule du rendement thermique du cycle à introduction de la chaleur à volume constant, peut être obtenue en remplaçant $(p_{d=1})$ dans la formule (IV.19):

5.2. deuxième cas particulier: la formule du rendement thermique du cycle à introduction isobare de la chaleur

La formule du rendement thermique du cycle à introduction de la chaleur à pression constante, peut être aussi obtenue à partir de l'expression (IV.19) par le remplacement de $(\lambda_{p=1})$

$$\Pi_t = 1 - \frac{1}{\varepsilon^{Y^{-1}}} \frac{[p_d y_{-1}]}{[Y \cdot (p_d - 1)]}$$
(IV.21)

6. formule de calcul de la pression moyenne du cycle

Pour obtenir la formule de calcul de la pression moyenne du cycle à introduction mixte de la chaleur (p_t) utilisons la formue (IV.2)

$$p_t = \frac{w}{V_h}$$

Ou bien, sachant que:

$$w = I_t q_1 \tag{IV.22}$$

On a:

$$p_t = \frac{\eta_t q_1}{V_h} \tag{IV.23}$$

En remplaçant (q_1) et les températures (T_eT_z,T_z) à partir des expressions (2.8), (2.11), (2.14) et (2.16) dans l'expression (2.23) de la pression moyenne (p_t) on obtient:

$$P_{t} = \frac{1}{V_{h}} \left\{ C_{V} \left(\lambda_{P} T_{a^{\varepsilon^{Y-1}}} - T_{a^{\varepsilon^{Y-1}}} \right) + C_{P} \left(P_{d} \cdot \lambda_{p} \cdot T_{a^{\varepsilon^{Y-1}}} - \lambda_{p} \cdot T_{a^{\varepsilon^{Y-1}}} \right) \Pi_{t} \right\}$$

Sachant que $(C_p C_V = \gamma)$ on a:

$$p_{t=\frac{1}{V_{h}}} \{ \prod_{t} C_{V} T_{a^{\varepsilon^{y-1}}} \} \{ (\lambda_{p} - 1) + \Upsilon . \lambda_{p} (p_{d} - 1) \}$$
 (IV.24)

En remplaçant dans cette expression :

$$V_h = V_a - V_c = V_a \left(1 - \frac{V_c}{V_a} \right) = V_a \frac{\varepsilon - 1}{\varepsilon}$$
 (IV.25)

Et (T_a) à partir de l'équation de l'état au point (a):

$$T_a = P_a \frac{V_a}{R} \tag{IV.26}$$

Ainsi que

$$R = C_P - C_V = C_V \left(\frac{c_P}{c_V} - 1\right) = C_V (y - 1)$$
 (IV.27)

On obtient, finalement, la formule de la pression moyenne du cycle à introduction mixte de la chaleur:

$$p_t = \frac{p_a}{y-1} \frac{\varepsilon^y}{\varepsilon-1} (\lambda_p - 1) + y \cdot \lambda_{p} \cdot (p_d - 1)$$
 (IV.28)

6.1. Premier cas particulier: la formule de la pression moyenne du cycle à introduction isochore de la chaleur

la formule de calcul de la pression moyenne du cycle à introduction de la chaleur à volume constant, peut être obtenue en remplaçant ($p_{d=1}$) dans la formule (IV,28):

$$p_t = p_a \frac{\varepsilon^y}{\varepsilon - 1} \frac{\lambda_p - 1}{y - 1} \eta_t$$
 (IV.29)

6.2. Deuxième cas particulier: la formule de la pression moyenne du cycle à introduction isobare de la chaleur

La formule de la pression moyenne du cycle à introduction de la chaleur à pression constante, est obtenue à partir de l'expression (IV.28) par le remplacement de ($\lambda_p = 1$)

$$p_t = p_a \frac{\varepsilon^y}{\varepsilon - 1} \frac{y \cdot (p_d - 1)}{y - 1} \prod_t$$
 (IV.30)

7.étude de l'influence de divers facteurs sur le rendement thermique et la pression moyenne

Cette étude permet de savoir sur quel paramètre il faut agir pour augmenter le rendement thermique et la pression moyenne.

7.1. Premier cas – le cycle à introduction isochore de la chaleur

7.1.1. Le rendement thermique

L'analyse de la formule (IV.20) montre que le rendement thermique de ce cycle dépend du taux de compression et de l'exposant adiabatique:

La valeur de l'exposant adiabatique, dépend de la nature du fluide moteur. D'autant plus. Les propriétés du fluide moteur se rapprochent de celles de l'air. D'autant plus l'exposant adiabatique accroit. Avec la croissance de cet exposant le rendement thermique (Π_t) augmente:

Le taux de compression est un paramètre géométrique. L'augmentation de ce paramètre jusqu'à une certaine valeur, assure une croissance considérable du rendement thermique. après cette valeur, la croissance du rendement thermique devient moins sensible.

La croissance du rendement thermique à l'aide de l'augmentation du taux de compression, est un moyen efficace qui peut être réalisé dans la pratique cependant, il faut prendre en considération qu'avec l'augmentation du taux de compression, la pression (p_z) et la température (t_z) dans le cylindre vont considérablement, accroitre . Ce qui mène à la croissance des contraintes mécaniques et thermiques.

Sachant que ce cycle est réalisé dans les moteurs à essence. Il faut souligner d'une part que. Malgré que la valeur limite du taux de compression dans les moteurs à essence n'est pas assez grande. De l'ordre de 11. Néanmoins. Les pièces du moteur doivent être conçues pour supporter ces contraintes. Et d'autre part qu'avec la croissance du taux de compression. La pression (p_c) et la température (T_c) à la fin de la compression. Vont accroitre sensiblement. Ce- ci peut provoquer l'auto- inflammation du mélange. Le danger de l'apparition de la détonation. Accroit. Et par conséquent. La valeur du taux de compression doit être mise en accord avec la valeur de l'indice d'octane du combustible. plus que le taux de compression est grand. Plus que la valeur de l'indice d'octane doit être. Aussi, grande.

Au total

$${\cal I}_{t=f(\varepsilon.y)}$$

$$\uparrow (y) \to \uparrow \left(\eta_t \right)$$

$$\uparrow (\varepsilon) \to \uparrow \left(\underline{\eta}_t \right)$$

Cependant

$$\uparrow (\varepsilon) \uparrow (p_z)et(T_Z)$$

$$\uparrow$$
 $(\varepsilon) \uparrow (P_C)et(T_C)$

7.1.2. La pression moyenne

A part l'exposant adiabatique et le taux de compression. La pression moyenne de ce cycle dépend du rendement thermique (Π_t) du taux de croissance de la pression (λ_p) et de la pression initiale du cycle (p_a)

Avec la croissance du rendement thermique (Π_t) de l'exposant adiabatique et du taux de compression (λ_p). La pression moyenne de ce cycle accroit.

La valeur du taux de croissance de la pression (λ_p) est proportionnelle à la quantité de la chaleur introduite. A volume constant. Durant le cycle. Donc. Elle est proportionnelle à la charge sur le moteur. Avec la croissance de (λ_p) la pression moyenne de ce cycle augmente.

Dans la réalité, la pression initiale du cycle (p_a) correspond à la pression dans la cylindre à la fin de l'admission (p_a) . D'autant plus. Cette pression est grande d'autant plus la pression moyenne du cycle (p_t) le devient aussi.

La valeur de la pression à la fin de l'admission. Dépend entre autre. Des paramètres du fluide à l'entrée du moteur. Il est possible d'accroitre cette pression en compriment le fluide avant son

arrivée dans le cylindre. Dans un compresseur .ceci est réalisé dans la pratique à l'aide d'un compresseur mis en mouvement. Sois par une liaison mécanique au vilebrequin ou mieux, à l'aide d'une turbine utilisant les gaz d'échappement du moteur. Dans le second cas l'ensemble compresseur-turbine est appelé turbocompresseur. L'augmentation de la pression du fluide moteur à l'admission à l'aide d'un compresseur est appelé suralimentation. La suralimentation permet d'accroitre la pression moyenne du cycle, donc et la puissance du moteur:

$$p_t = f\left(\varepsilon, y, \eta_{t,\lambda} \lambda_{p,p_a}\right)$$

$$\uparrow (I_t) \uparrow (p_t)$$

$$\uparrow (y) \uparrow (p_t)$$

$$\uparrow (\varepsilon) \uparrow (p_t)$$

$$\uparrow (\lambda_p) \uparrow (p_t)$$

$$\uparrow (p_a) \uparrow (p_t)$$
 à l'aide de la suralimentation

7.2. Deuxième cas-le cycle à introduction isobare de la chaleur

7.2.1 Le rendement thermique

Dans ce cas, le rendement thermique dépend de l'exposant adiabatique (y) du taux de compression (ε) et du taux de la détente préliminaire (p_d)

Comme dans le cas précédent. L'augmentation de l'exposant adiabatique (y) et du taux de compression (ε) . Assurent la croissance du rendement thermique.

La valeur du taux de détente préliminaire (p_d) dépend de la quantité de la chaleur introduite à pression constante et donc de la charge sur le moteur.

L'analyse de la formule (2.21) montre. Qu'avec la croissance du taux de détente préliminaire et donc de la charge sur le moteur, le rendement thermique décroit.

Dans ce cycle. Le rendement thermique est maximale lorsque la valeur du taux de détente préliminaire. Est minimale. C'est-à-dire . lorsque la charge sur le moteur est minimale et donc. Lorsque le moteur fonctionne à vide, ou toute l'énergie développée par le moteur est consommée. Uniquement, pour vaincre les frottements et pour la mise en mouvement des mécanismes et dispositifs du moteur.

Pour les mêmes conditions, d'après les formules du rendement thermique, la valeur de celuici dans le cycle à introduction de la chaleur à volume constant est supérieur de celui du cycle à introduction de la chaleur à pression constante, puisque le terme $(p_{d^y} - 1)y(p_d - 1)$ est toujours supérieur à un.

$$\prod_{t} = f(\varepsilon, y, p_d)$$

$$\uparrow (y) \uparrow (\eta_t)$$

$$\uparrow (\varepsilon) \uparrow \left(I \right]_t)$$

$$\uparrow (p_d) \downarrow \left(\prod_t \right)$$

7.2.2. la pression moyenne

A part le taux de compression et l'exposant adiabatique, la pression moyenne de ce cycle dépend aussi du rendement thermique (Π_t) . De la pression initiale du cycle (p_a) et du taux de détente préliminaire (p_a) .

Comme dans le cas précédent, l'augmentation de l'exposant adiabatique (y) du taux de compression (ε) , du rendement thermique ainsi que de la pression initiale du cycle (p_a) , assurent la croissance de la pression moyenne du cycle.

L'analyse de la formule (2.30)montre qu'avec la croissance du taux de détente préliminaire (p_d) et donc de la charge sur le moteur. La pression moyenne de ce cycle augmente:

$$p_t = f(\varepsilon, y, \eta_t, p_{d}, p_a)$$

$$\uparrow (y) \uparrow (p_t)$$

$$\uparrow(\varepsilon)\uparrow(p_t)$$

$$\uparrow \left(\boldsymbol{\eta}_t \right) \uparrow \left(\boldsymbol{p}_t \right)$$

$$\uparrow(p_a)\uparrow(p_t)$$

$$\uparrow (p_d) \uparrow (p_t)$$

7.3. Troisième cas-le cycle à introduction mixte de la chaleur

7.3.1 le rendement thermique

Selon la formule (IV.19) le rendement thermique du cycle à introduction mixte de la chaleur dépend de l'exposant adiabatique (y) du taux de compression (ε) du taux de croissance de la pression (λ_p) et du taux de détente préliminaire (p_d)

Il faut constater qu'en particulier, Pour le cycle à introduction mixte de la chaleur, l'augmentation du taux de compression est accompagnée d'une croissance considérable de la pression (p_z) et de la température (T_z) à la fin de l'introduction de la chaleur. Ceci peut créer des contraintes mécaniques et thermiques inadmissibles sur les pièces du moteur. Et par conséquent. Durant la construction. La valeur maximale du taux de compression est limitée par la valeur des contraintes mécaniques et thermiques. Alors que la valeur minimale de ce paramètre est limitée par la possibilité du lancement à froid du moteur .cette valeur est en accord avec la valeur de l'indice de cétane du combustible. Plus que le taux de compression est petit .plus que la valeur de l'indice de cétane doit être grande.

La valeur du taux de croissance de la pression (λ_p) dépend de la quantité de la chaleur introduite à volume constant. Alors que la valeur du taux de détente préliminaire (p_d) dépend de celle introduite à pression constante. Pour une quantité constante de la chaleur totale introduite durant le cycle. L'augmentation de la quantité de la chaleur introduite à volume constant. Avec une diminution correspondante de la chaleur introduite à pression constante. Le rendement thermique de ce cycle augmente.

$$\Pi_{t=f}(\varepsilon,\Upsilon,\lambda_p,p_d)$$

Comme dans le cas précédent, on a :

$$\uparrow (y) \uparrow (I_{t})$$

$$\uparrow (\varepsilon) \uparrow \left(I \right]_t)$$

 \uparrow (ε) \uparrow (p_z) et (T_z) le danger des contraintes inadmissibles

Pour
$$(q_1)$$
=const.: { $\{\lambda_{pavec}(p_d) \not [\eta_t]\}$

7.3.2. La pression moyenne

A part les facteurs qui influencent sur le rendement . la pression moyenne du cycle dépend aussi du rendement thermique (η_t) et de la pression initiale du cycle (p_a) pour les même raisons que le cycle précédent. On a :

Pour une quantité constante de la chaleur introduite durant le cycle l'augmentation du taux de croissance de la pression (λ_p) avec la diminution correspondante du taux de détente préliminaire (p_d) . La pression moyenne du cycle augmente.

Comme il est dit ci-avant l'augmentation de la pression initiale du cycle dans la pratique, peut être assurée par la suralimentation.

Chapitre V Calcul thermodynamique des cycles réels

Donnés

- ✓ puissance P_e KW.
- ✓ Vitesse de rotation n tr/min.
- ✓ Rapport volumétrique E
- ✓ No de cylindres et leur disposition i
- \checkmark Pression de suralimentation P_s bars.
- ✓ Moteur de, à quatre temps Ţ.

Conditions générales

Par ce calcul on détermine les grandeurs d'état pour le fluide moteur dans les principaux points du cycle pour tracer le diagramme de pression P-V et déterminer ainsi la pression moyenne du cycle.

Ayant la base ce diagramme de pression on peut déterminer les dimensions fondamentales du moteur – l'alésage D et la course du piston S– et les principaux indices techniques et économiques du moteur :

Le rendement thermique.

La consommation spécifique de combustible.

On fait le calcul du cycle thermodynamique du moteur au régime nominal : vitesse de rotation n_n et charge continue (85% charge pour moteurs de voiture et de camion et 100% pour moteur de locomotive, navire ou stationnaires).

Il y a une multitude des méthodes pour calculer le cycle moteur :

Les unes, abordant le cycle théorique, considèrent le fluide moteur un mélange des gaz parfaits.

Les autres considèrent l'évolution des gaz réels dans un cycle réel.

Les premières méthodes traitent les phénomènes est les processus d'un cycle *global* peut être utilisées pour les calculs préliminaires dans la conception d'un moteur.

Elles sont encore très bonnes pour interpréter différentes influences sur le cycle moteur.

La deuxième catégorie poursuit la transformation progressivement *pas à pas* considérant une multitude des particularités des processus du cylindre du moteur :

L'écoulement des gaz.

Le procède d'alimentation.

La loi de combustion.

Le changement de chaleur entre les gaz et la paroi.

La vaporisation du combustible.

La réalisation du mélange.

Le mouvement des gaz dans le cylindre....

De suite est présenté la méthode simplifiée (approximative) du cycle *global*.

On fait le calcul pour un cycle semi-réel, nommé cycle de référence, du moteur diesel rapide à admission normale.

Pour le moteur à allumage commandé et le moteur suralimenté, on fait des éclaircissements, le cas échéant, sur la modification qui surviennent dans les formules mathématiques établies.

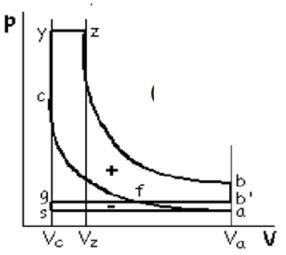


Fig.1. Cycle du moteur diesel rapide (admission naturelle).

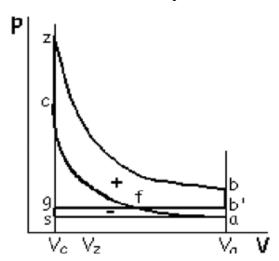


Fig.2. Cycle du moteur à allumage commandé (admission naturelle).

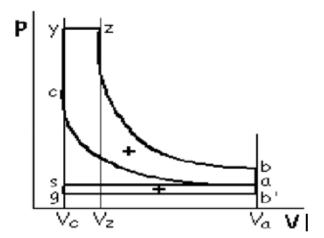


Fig.3. Cycle du moteur à diesel rapide suralimenté.

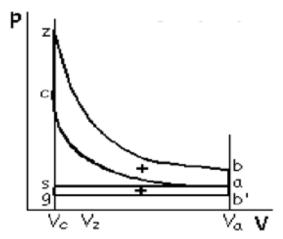


Fig.4. Cycle du moteur à allumage commandé suralimenté.

On utilise dans ce calcul les notations suivantes :

E=V_a/V_c−rapport volumétrique.

 $\varrho_{dp} = V_z/V_c$ -taux de détente préalable.

 $\lambda_p = P_z/P_c$ -rapport d'accroissement de la pression pendant la combustion.

Si:

 $q_{dp}=1$, c'est-à-dire $V_z=V_c$, on obtient le cycle du moteur à allumage commandé.

Le calcul de ces cycles impose certaines hypothèses simplificatrices :

- Dans le cylindre du moteur se trouve un mélange homogène des gaz parfaites.
- Les processus d'échappement et d'admission se déroulent à pression constante.
- La coïncidence du début de processus et de course d'admission (donc pas d'avance à l'ouverture de soupape d'admission).
- L'annulation de la période de recouvrement des soupapes.
- La soupape d'échappement s'ouvre en PMB, l'échappement libre étant remplacé par une évolution isochore b-b.
- La charge fraiche s'échauffe en contact avec les pièces chaudes du moteur.
- Au début d'admission il y a des gaz brulés résiduels gbr (resté de cycle précèdent), c'està-dire à la fin d'admission il y a un mélange initial.
- Les processus d'admission et de détente sont des évolutions poly tropiques à indices poly tropiques constants m_c,m_d.
- On suppose que dans un cycle moteur a lieu la combustion d'un kilogramme de carburant.

Calcul de l'échange des gaz (la respiration):

N₀ Kilomoles de charge fraiche entre dans le cylindre.

Cette charge fraiche, en contact avec les pièces chaudes du moteur, s'échauffe (reçue la quantité de chaleur Q_p); c'est-à-dire qu'à l'entrée du cylindre elle a la température :

$$T_0 = T_0 + \Delta T$$

ΔT étant le degré d'échauffement de la charge fraiche.

Le type du moteur			ΔT [°C]
	Combustible liquide		10 45
MAC (moteur à allumage commandé)	Combustible gazeux	Gaz de générateur	10 25
		Gaz liquéfié	10 45
MD (mataux diagal)	Admission normale		10 20
MD (moteur diesel)	Suralimenté		5 10

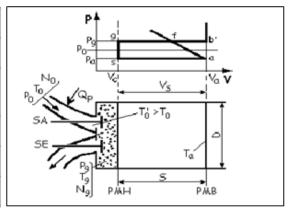


Tableau V.1 Le degré d'échauffement de la charge fraiche ∆T.

Au début de la course d'admission, dans le cylindre se trouve N_g kilomoles de gbr à une pression P_g et une température T_g qui occupent le volume de la chambre de combustion V_c .

La pression $P_{\rm g}$ et la température $T_{\rm g}$ de gaz brulés résiduels :

Le type du moteur		p _g [MPa]	т ₉ [K]
Admission naturelle	Semi-rapide	(1,031,10).p ₀	
Admission naturelle	Rapide	(1,031,15).p ₀	
Samuel in a material	Comprex	(1,011,07).p ₀	600900
Suralimenté	Turbosoufflante	(0,700,90).p _s	

Tableau V.2 La pression P_g et la température T_g de gaz brulés résiduels

Les conditions standard de la charge fraiche sont :

 $P_0 = 0,1 \text{ MPa}.$

 $T_0=298 \text{ K}.$

Le calcul de l'admission consiste en déterminer :

Le coefficient de remplissage η_v .

Le coefficient des gbr γ.

La température T_a à la fin du processus d'admission.

Le bilan énergétique du processus d'admission est :

$$U_g \!\!+\! U_0 \!\!+\! Q_g \!\!+\! L_0 \!\!=\! U_a \!\!+\! L$$

Ou

U_g:est l'énergie interne des gbr.

U₀: est l'énergie interne de la charge frais.

Qg: est la quantité de chaleur transférée de parois au charge fraiche.

L₀: est le travail mécanique reçu de charge fraiche de l'environnement.

U_a: est l'énergie interne du mélange initial.

L : est le travail mécanique changé entre le fluide moteur et le piston pendant la course d'admission.

Chaque terme est décrit par les équations suivantes :

$$U_g = C_{M, V.Pg.Vc}/R_M$$

$$U_0 = C_{M,V}.P_0. \, \eta_v.V_s/R_M$$

$$\begin{split} Q_p &= C_{M,\,p}.\; P_0.\; \eta_v. V_s \;. \{ (T'_0/T_0)\text{-}1 \} / R_M \\ L_0 &= P_0. V_0 \text{=} P_0.\; \eta_v. V_s \\ U_a &= C_{M,\,V}. P_a. V_a / R_M \\ L &= \int_{V_C}^{Va} p dV \; \text{=} p_a. V_s \end{split}$$

Par suite le bilan énergétique devient :

$$P_g+P_0$$
. $\eta_v.(\epsilon-1).K.(T'_0/T_0)=p_a.[\epsilon+(K-1)(\epsilon-1)]$

Le coefficient de remplissage η_{v} s'obtient choisissant préalablement la pression d'admission p_{a} :

$$\eta_v\!\!=\!\!p_a \; [\epsilon\!\!+\!(K\!\!-\!\!1)\;.(\epsilon\!\!-\!\!1)]\!\!-\!\!p_g\!/p_0.(\epsilon\!\!-\!\!1).K.(T'_0\!/T_0)$$

Le type du moteur		p _a [MPa]
Admission	Semi-rapide	(0,90 ÷ 0,98).p ₀
normale	Rapide	(0,80 ÷ 1,05*).p ₀
Sunaliment é	Comprex	(0,86 ÷ 0,93).p _s
Suralimenté	Turbosoufflante	(0,91 ÷ 0,985).p _s

Tableau V.3 : Les valeurs de la pression d'admission p_a à la fin d'admission

L'indice adiabatique Ka les valeurs :

- 1,34 pour les moteurs à allumage commandé.
- 1,4 pour les moteurs diesel.

Valeurs recommandés pour le coefficient de remplissage η_v dans le tableau suivant :

Le type du moteur			n _v
MAC (moteur à	Combustible liquide		0,75 1,05*
allumage	Combustible	Gaz de générateur	0,65 0,70
		G.P.L.	0,75 0,85
Semi-rap			0,80 0,92
MD (moteur diesel)	Rapide		0,75 0,92

Tableau V.4: Les valeurs pour le coefficient de remplissage η_v

*dans le cas de l'utilisation des résonateurs à grande vitesses.

Dans le cas du moteur suralimenté :

- ✓ P_0 devient p_s .
- \checkmark T₀ devient T_s.
- ✓ T'₀ devient T'_s.

Ou:

$$T_s = T_0.(p_s/p_0)^{m-1/m} - \Delta T_{RI}$$

Type de compresseu	m	
ROOTS ou SPRINT	1,55 1,75	
Cambuifusa	Refroidi	1,40 1,80
Centrifuge	Non refroidi	1,80 2,00

Tableau V.5 : L'indice poly tropique m dépend de type de compresseur utilisé

Par l'application du refroidissement intermédiaire le baissement de la température est : ΔT_{RI} =20.....110 0 C.

Donc: $T'_s = T_s + \Delta T$

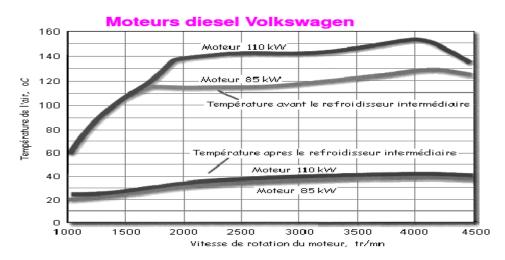


Figure 5 : la variation de température pour un moteur diesel Volkswagen.

La fraction résiduelle des gaz brulés N_g , proportionnelle à la charge fraiche N_0 , est désignée par $\gamma: \gamma=N_g/N_0$.

Appliquant l'équation d'état aux gbr et à la charge fraiche également et, faisant leur rapport, on obtient :

$$\gamma = \frac{p_g}{p_0} \cdot \frac{1}{\eta_v} \cdot \frac{1}{\varepsilon - 1} \cdot \frac{T_0}{T_g}$$

Dans le cas du moteur suralimenté les conditions d'état p_0 , T_0 sont la pression et la température de la charge fraiche à l'entrée dans le cylindre $-p_s$, T_s .

Le type du moteur	γ	
MAC (moteur à allumage	Combustible liquide	0,06 0,18
	Combustible gazeux	0,05 0,16
MD (moteur à allumage	Admission naturelle	0,03 0,06
commandé)	Suralimenté	0,01 0,03

Tableau V.6 : Valeur recommandées pour y dans le tableau suivant

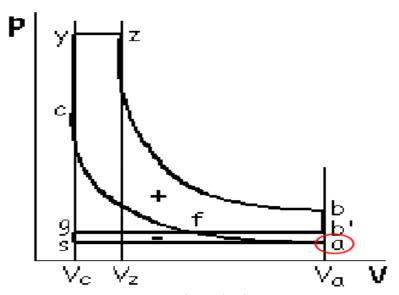


Figure 6: phase d'admission

La température T_a à la fin d'admission s'obtient écrivant le bilan massique dans le point adu cycle (la fin de la course admission).

$$N_a = N_g + N_0 = N_0 (1 + y)$$

Et l'équation d'état dans le point a ; on obtient :

$$T_a = \frac{p_a}{p_0} \cdot \frac{1}{\varepsilon_v} \cdot \frac{\varepsilon}{(\varepsilon - 1)} \cdot \frac{1}{(\gamma + 1)} \cdot T_0$$

Dans le cas du moteur diesel suralimenté on remplace p₀et T₀ par p_set T_s.

Le type de moteur		Ta	[K]
Adminsion notematic	MAC	320	.370
Admission naturelle	WD	320	.350
Suralimenté		330	.400*

Tableau V.7 : Valeurs recommandées pour T_a dans le tableau suivant

*on peut vérifier la température T_a avec la relation empirique : T_a=0,833.T_s'+86

${\bf Application\ moteur\ \grave{a}\ allumage\ command\acute{e}-admission\ naturelle\ MAC-AN}$

Donnés MAC-AN

Rapport volumétrique : ε =8.

Type admission: admission naturelle.

Température standard de la charge fraiche : T₀=298 K.

Pression standard de la charge fraiche : $p_0=0,1$ MPa ou (ou p_01 bar).

L'indice adiabatique des gaz : K=1,34 (K=1,34).

Valeur choisies - MAC AN:

Taux d'échauffement de la charge fraiche : $\Delta T=25$ °C ($\Delta T=10$ 45 °C).

La température T_g des gaz brulés résiduels : T_g=750 K (T_g=600.....900).

La pression pg des gaz brulés résiduels :

$$Pg=0,107 MPa ((1,03.....1,15).p_0=0,103.....0,115 MPa).$$

La pression p_a du mélange frais : p_a=0,095 MPa

$$((0,90.....0,98).p_0=0,098 \text{ MPa}).$$

Calcul du coefficient de remplissage η_v MAC – AN :

On détermine la température de la charge fraiche à l'entrée dans le cylindre T₀:

$$T'_0 = T_0 + \Delta T = 298 + 25 = 323 \text{ K}.$$

Et maintenant le coefficient de remplissage η_v :

$$\eta_v\!=\!\!\frac{p_a[\epsilon\!+\!(K\!-\!1)(\epsilon\!-\!1)]\!-\!p_g}{p_0.(\epsilon\!-\!1).K.\frac{T'_0}{T_0}}\!\!=\!\!\frac{0,\!095[8\!+\!(1,\!34\!-\!1)(8\!-\!1)]\!-\!0,\!107}{0,\!1.(8\!-\!1).1,\!34.\frac{323}{298}}\!\!=\!\!0,\!865$$

Valeurs recommandées : $\eta_v = 0.75.....1.05$ (valeurs supérieures à 0.9 dans le cas des résonateurs).

Calcul du coefficient des gaz brulés résiduels y MAC – AN :

On applique la relation :

$$\gamma = \frac{p_g}{p_0} \cdot \frac{1}{\eta_v} \cdot \frac{1}{\varepsilon - 1} \cdot \frac{T_0}{T_g} = \frac{p_g}{p_0} \cdot \frac{0,107}{0,865} \cdot \frac{1}{8 - 1} \cdot \frac{298}{750} = 0,068$$

Valeurs recommandées : y=0,06.....0,18

Calcul de la température à la fin d'admission T_a MAC – AN :

On applique la relation:

$$T_{a} = \frac{p_{a}}{p_{0}} \cdot \frac{1}{\eta_{v}} \cdot \frac{\varepsilon}{(\varepsilon-1)} \cdot \frac{1}{(\gamma+1)} \cdot T_{0} = \frac{0.095}{0.1} \cdot \frac{1}{0.865} \cdot \frac{8}{(8-1)} \cdot \frac{1}{(0.06+1)} \cdot 298 = 352.8 \text{ K}.$$

Valeur recommandées : y=320.....370

Application moteur diesel suralimenté MD – TS :

Donnés MD - TS:

Rapport volumétrique : ε =22.

Type admission: suralimenté.

Température standard de la charge fraiche :T₀=298 K

Pression standard de l'environnement : P₀=0,1 MPa (ou p₀=1 bar).

Valeurs choisies MD – TS:

Taux d'échauffement de la charge fraiche : ΔT =7 ^{0}C

$$(\Delta T = 5.....10^{0} C).$$

La température $T_{\rm g}$ des gaz brulés résiduels : $T_{\rm g}$ =800 K

$$(T_g=600.....900 \text{ K}).$$

La pression pg des gaz brulés résiduels : pg =0,153 MPa

$$((0,70.....0,90).p_s=0,126.....0162 \text{ MPa}).$$

La pression p_a du mélange frais : p_a=0,165 MPa

$$((0.91.....0.985).p_s=0.1638.....01773 \text{ MPa}).$$

L'indice poly tropique soufflante : m=1,6 ($k=1,4,\ldots,2,0$)

Chute de température dans le refroidisseur intermédiaire : ΔT_{RI} =40 °

$$(\Delta T = 20....110^{0}C).$$

Calcul du coefficient de remplissage η_v MD – TS :

On détermine la température de la charge fraiche après la soufflante et le refroidisseur intermédiaire T_s

$$T_s = T_0 \left(\frac{p_s}{T_o}\right)^{m-1/m} \Delta T_{RI} = 298. \left(\frac{1.8}{1}\right)^{1.6-1/1.6} - 40 = 331,48 \text{ K}$$

Et maintenant la température de la charge fraiche à l'entrée dans le cylindre T's:

$$T'_s = T_s + \Delta T = 331,48 + 7 = 338,48 \text{ K}$$

Calcul du coefficient de remplissage η_v MD – TS :

On détermine le coefficient de remplissage η_v appliquant la relation de l'admission naturelle ou p_0 devient p_s , T_0 devient T_s , T'_0 devient T_s' :

$$\eta_{\text{v}}\!\!=\!\!\frac{p_{a}[\epsilon\!+\!(k\!-\!1)(\epsilon\!-\!1)]\!-\!p_{g}}{p_{0}.(\epsilon\!-\!1).k.\!\frac{T'_{0}}{T_{0}}}\!\eta_{\text{v}}\!\!=\!\!\frac{p_{a}[\epsilon\!+\!(k\!-\!1)(\epsilon\!-\!1)]\!-\!p_{g}}{p_{s}.(\epsilon\!-\!1).k.\!\frac{T'_{S}}{T_{S}}}$$

$$\eta_v = \frac{0,165.[22 + (1,4 - 1)(22 - 1)] - 0,153}{0,18.(22 - 1).1,4.\frac{338,48}{331,48}} = 0,899$$

Valeurs recommandées : η_v=0,75.....0,92

Calcul du coefficient des gaz brulés résiduels y MD - TS :

On applique la relation de l'admission naturelle ou p₀ devient p_s, T₀ devient T_s:

$$\mathbf{y} = \frac{p_g}{p_0} \cdot \frac{1}{\eta_{\mathrm{v}}} \cdot \frac{1}{\varepsilon - 1} \cdot \frac{T_0}{T_g} \mathbf{y} = \frac{p_g}{p_s} \cdot \frac{1}{\eta_{\mathrm{v}}} \cdot \frac{1}{\varepsilon - 1} \cdot \frac{T_s}{T_g}$$

$$\frac{0,153}{0.18} \cdot \frac{1}{0.899} \cdot \frac{1}{22-1} \cdot \frac{331,48}{800} = 0,0186$$

valeurs recommandèes : 2 = 0,01 0,03

Calcul de la température à la fin d'admission T_a MD – TS :

On applique la relation de l'admission naturelle ou p_0 devient p_s , T_0 devient T_s :

$$T_a = \frac{p_a}{p_0} \cdot \frac{1}{\eta_v} \cdot \frac{\varepsilon}{\varepsilon - 1} \cdot \frac{1}{v + 1} \cdot T_0$$

$$T_a = \frac{p_a}{p_s} \cdot \frac{1}{n_v} \cdot \frac{\varepsilon}{\varepsilon - 1} \cdot \frac{1}{v + 1} \cdot T_s$$

$$T_a \!\!=\!\! \frac{_{0,165}}{_{0,18}}.\frac{_1}{_{0,899}}.\frac{_{22}}{_{22-1}}.\frac{_1}{_{0,0186+1}}.331,\,48 \!\!=\!\! 347,\!6~K$$

Valeurs recommandées : y=330.....400.

Calcul de la compression

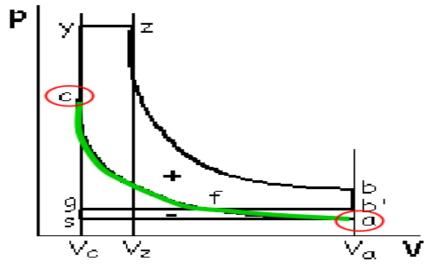


Figure 6 : phase de compression

Appliquant les équations de la poly tropique à indice poly tropique constant m_c pour les états a et c, on obtient :

$$P_c=p_a.\epsilon^{mc}$$

$$T_c = T_a.\epsilon^{mc\text{-}1}$$

Le type de moteur		m _c
MAC	Combustible liquide	1,281,37
MAC	Combustible gazeux	1,281,38
445	Semi-rapide	1,301,36
WD	Rapide	1,351,38

Tableau V.8: Valeurs de l'indice polytropique.

Le	type de moteu	r	p _c [MPa]	T _c [K]
MAC	Admission naturelle		0,92,5 a)	600800
MAC	Suralimenté		2,03,5	650800
	Admission	Semi-rapide	3,56,0	7501100
	naturelle	Rapide	3,58,0	7501100
WD	Calimanaá	Semi-rapide	4,014,0	
	Suralimenté	Rapide	4,09,0 b)	8001200 ^{c)}

Tableau V.9 : Valeur recommandées pour les paramètres p_c , T_c

A)- pour ε >10 et p_c \leq 4 MPa.

B)-pour $p_s>0.5$ MPa et $p_c\leq13$ MPa.

C)-la fourchette optimum pour le moteur diesel : 800.....850 K.

Application moteur à allumage commandé-admission naturelle

MAC - AN:

Donnès MAC-AN:

Rapport volumétrique : ε =9.

Température de la charge fraiche à la fin d'admission : T_a=346,45 K.

Pression de la charge fraiche à la fin d'admission : p_a=0,095 MPa (ou p_a=0,95 bar).

Valeurs choisies MAC-AN:

L'indice poly tropique pendant la compression : $m_c=1,32$ ($m_c=1,28.....1,37$).

Calcul de la température de la charge fraiche à la fin de compression p_s et T_s: MAC-AN :

$$P_c = p_a.\epsilon^{mc} = 0.095.9^{1.32} = 1.73 \text{ MPa}$$

$$T_c \!\!=\!\! T_a.~\epsilon^{mc\text{-}1} \!\!= 346,\!45.9^{1,~32\text{-}1} \!\!=\!\! 699,\!84~K$$

Valeurs recommandées :

$$P_s = 0.9.....4.0 \text{ MPa}.$$

$$T_s = 600.....800 \text{ k}.$$

Application moteur diesel suralimenté MAC-TS:

Donnés MD-TS:

Rapport volumétrique : ε =18,5.

Température de la charge fraiche à la fin d'admission : T_a=344 K.

Pression de la charge fraiche à la fin d'admission : p_a=0,23 MPa (ou p_a=2,3 bar).

Valeurs choisies MD-TS:

L'indice polytropique pendant la compression : $m_c=1,35$ ($m_c=1,35$1,38).

Calcul de la température de la charge fraiche à la fin de compression p_c et T_c MD-TS :

$$P_c = p_a.\epsilon^{mc} = 0.23.18.5^{1.35} = 11.81 \text{ MPa}.$$

$$T_c=T_a.\epsilon^{mc-1}=344.18,5^{1,35-1}=955 \text{ K}.$$

Valeurs recommandées :

$$P_c = 4,0.....9,0$$
 MPa.

$$T_c = 800.....1000 \text{ K}$$
.

Calcul de la combustion :

L'air stœchiométrique A_s nécessaire à la combustion complète d'un kilogramme de combustible est :

$$A_s = \frac{1}{0.21} \cdot \left\{ \frac{C}{12} + \frac{h}{4} - \frac{o}{32} \right\}$$

et encore la quantité réelle d'air pour la combustion A :

$$A=\lambda.A_s$$

Au calcul de la combustion il est nécessaire de déterminer les kilomols de charge fraiche N_0 à chaque type de moteur :

Au moteur diesel classique ou la charge fraiche est formée seulement d'air :

$$N_0 = A = \lambda A_s$$

Au moteur à allumage commandé ou dans le cas du moteur diesel à deux à deux carburants (l'un étant introduit dans l'admission du moteur), ou la charge fraiche est formé de deux participants à la combustion – le carburant (communément l'essence) et le comburant (l'air) :

$$N_0 = \lambda A_s + \frac{1}{M_{ch}}$$

Dans le tableau suivant sont présentés les quantités stœchiométrique d'oxygène O_s et d'air A_s nécessaires à la combustion, la masse moléculaire M_{cb} et le pouvoir calorifique inférieur PCI de quelques combustibles utilisés dans les moteurs à combustion interne.

Le combustible	Analyse élémentaire (massique) %	Os	As	PCI	M _{cb}
combastible	c/h/o	Kmol/kg cb	Kmol/kg cb	KJ/kg cb	Kmol/kg cb
Essence	85,4/14,2/0,4	0,1065	0,5073	43 529	114
Pétrole	86,0/13,7/ 0,3	0,1058	0,5038	43 111	_
Gazole	85,7/13,3/ 1,0	0,1043	0,4966	41 855	204
Mazout	86,0/12,0/ 2,0	0,1010	0,4809	41 855	_
Méthanol	37,5/12,5/50,0	0,0420	0,2000	19 500	32
Ethanol	52,0/13,0/35,0	0,0650	0,3100	26 800	46
Méthane	75,0/25,0/ -	0,1247	0,5939	50 000	16
Hydrogène	- /100,0/ -	0,2500	1,1900	119 617	2

Tableau V.10 : les quantités stœchiométrique et le pouvoir calorifique inférieur PCI

Le type de moteur			λ
Combustible	liquide		0,85-0,95
Combustible	gazeux		0,95-1,40
		Injection directe en volume	1,40-1,70
Combustible liquide	Admission naturelle ble	Injection directe sur paroi	1,30-1,50
		Injection indirecte	1,10-1,40
		Injection directe en volume	1,70-2,00
	Suralimenté	Injection directe sur paroi	1,50-1,70
Injection indi		Injection indirecte	1,30-1,70
Combustible gazeux (diesel-gaz)			1,40-2,20

Tableau V.11: Coefficient d'excès d'air

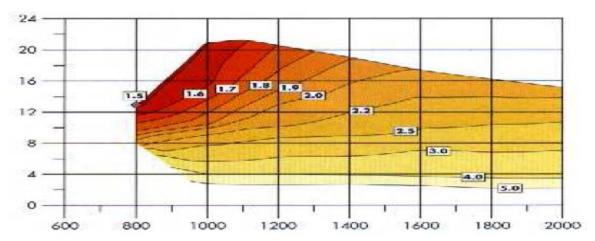


Figure 7 : Coefficient d'excès d'air – moteur diesel suralimenté (un étage de suralimentation)

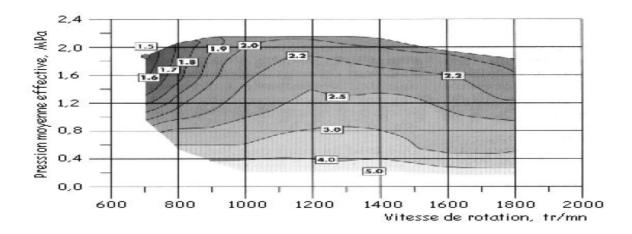


Figure 8 : Coefficient d'excès d'air – moteur diesel suralimenté (deux étage de suralimentation)

Les produits de combustion sont en dépendance directement de coefficient d'excès d'air λ :

Pour $\lambda > 1$, les produits de combustion sont :

Pour $\lambda=1$, les produits de combustion sont :

CO₂, H₂O et N₂

CO₂, CO,H₂O et N₂

Connaissant l'analyse élémentaire massique du combustible :

$$1$$
Kg cb =c+h+o

Les kilomols de CO₂,H₂O,N₂,O₂ pour mélanges pauvres et stœchiométriques sont :

$$N_{CO2} = \frac{c}{12}$$
 [Kmol CO₂/Kg cb]
$$N_{H2O} = \frac{h}{12}$$
 [Kmol H₂O/Kg cb]
$$N_{N2} = 0, 79. \lambda. A_s$$
 [Kmol N₂/Kg cb]
$$N_{O2} = 0, 21. (\lambda-1).A_s$$
 [Kmol O₂/Kg cb]

Dans le cas des mélanges riches on fait la supposition que l'hydrogène, étant très actif du point de vue chimique, il trouve vite l'air nécessaire pour une oxydation complète, pendant que le carbone s'oxyde partiellement à CO_2 -x et partiellement à CO_2 -y:

x Kg C +
$$\frac{x}{12}$$
 Kmol O₂ $\rightarrow \frac{x}{12}$ Kmol CO₂
y Kg C + $\frac{1}{2}\frac{y}{12}$ Kmol O₂ $\rightarrow \frac{y}{12}$ Kmol CO

Pour déterminer les quantités des Kmols de CO₂ – et de CO – on écrit le bilan du carbone :

$$X+Y=C$$

Et le bilan de l'oxygène :

$$\frac{X}{12} + \frac{1}{2} \cdot \frac{Y}{12} + \frac{h}{4} - \frac{o}{32} = 0, 21.\lambda.$$
As

La solution du système de deux bilans est :

$$\frac{X}{12} = \frac{C}{12} - 0$$
, 42. (1- λ). A_s [Kmols CO₂/Kg cb]

$$\frac{Y}{12} = 0, 42. (1-\lambda).A_s$$
 [Kmols CO/Kg cb]

Donc les Kmols de ${\rm CO}_2,\,{\rm CO},\,{\rm H}_2{\rm O},\,{\rm N}_2,$ pour ce mélange richesont :

$$N_{CO2} = \frac{C}{12} - 0, 42. (1 - \lambda).A_s$$
 [Kmols C0₂/Kg cb]

$$N_{CO}=0, 42 . (1-\lambda).A_s$$
 [Kmols CO/Kg cb]

$$N_{N2}=0$$
, 79. λ .As [Kmols N_2 /Kg cb]

Pour chacun de ces cas, la quantité finale des gaz brulés N_{f} est :

$$N_f = \frac{C}{12} + \frac{h}{2} + 0.79 . \lambda . As + 0.21 . (\lambda - 1) . As$$

Mèlange stœchiométrique, $\lambda=1$:

$$N_f = \frac{C}{12} + \frac{h}{2} + 0.79.A_s$$

Mélange riche, $\lambda < 1$, (cas du moteur à allumage commandé) :

$$N_f = \frac{C}{12} + \frac{h}{2} + 0.79 .\lambda. A_s$$

Le coefficient chimique de variation molaire :

 $\mu_{ch.}est$:

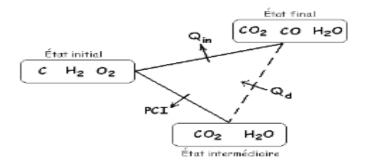
$$\mu_{ch.} = \frac{N_f}{N_o}$$

Tenant compte des gaz brulés résiduels on détermine le coefficient réel de variation molaire μ_r :

$$\mu_r = \frac{N_f + N_g}{N_o + N_g} = \frac{\mu_{ch} + \gamma}{1 + \gamma}$$

On établit maintenant la quantité de chaleur dégagée pendant le processus de combustion tenant compte qu'elle dépende de qualité de mélange λ :

Si $\lambda \ge 1$, la combustion est complète et la quantité de chaleur dégagée est même le pouvoir calorifique inférieur PCI du combustible :

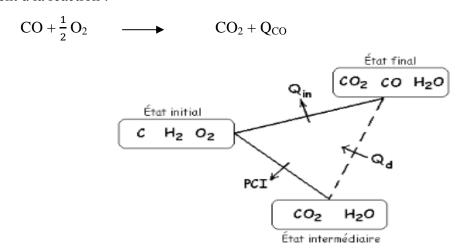

Si $\lambda < 1$, la quantité de chaleur dégagée correspond à la combustion incomplète du combustible Q_{in}

Pour déterminer cette chaleur Q_{in} on considère la combustion en deux étapes :

Première étape :

La combustion a lieu jusqu'à un état intermédiaire dont le carbone et complètement brulé : on obtient CO₂

La quantité de chaleur dégagée correspond à le pouvoir calorifique inférieur PCI.



Deuxième étape :

Une partie des molécules de CO₂est soumise à un processus de dissociation pour obtenir la quantité de Co, correspondante à l'état final.

La quantité de chaleur nécessaire pour ce processus est Q_d.

Pour la dissociation d'un Kmoles de CO_2 la quantité de chaleur consommée est Q_{CO} , conformément à la réaction :

Le pouvoir calorifique inférieur PCI moins cette quantité de chaleur Q_{CO} multipliée par le nombre de Kmoles de CO-Y/12 fourni la quantité de chaleur correspondante à la combustion incomplète du combustible Q_{in} :

$$Q_{in}$$
=PCI - Q_d = PCI - 0,42. (1 - λ). A_S . Q_{CO} = PCI - 119538. (1 - λ). A_S

Pour calculer les paramètres finals du processus de combustion on considère le cycle de référence du moteur diesel rapide à admission naturelle, l'état z

Tous les autres cas s'obtiennent par la particularisation des relations déjà déterminées.

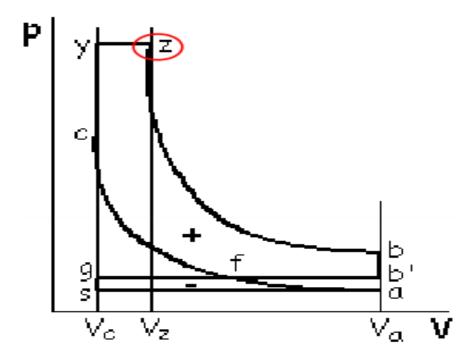


Figure 9: processus de combustion.

La quantité de chaleur dégagée par combustion Q (PCI pour $\lambda \ge 1$ or Q_{in} pour $\lambda < 1$, selon le cas) est utilisée en trois directions :

Modifier l'énergie interne du fluide moteur $-\Delta U_{c-z}$.

Effectuer de travaille mécanique -L_{c-z}.

Une partie est perdue aux parois- $Q_{P(c-z)}$:

$$Q = \Delta U_{c\text{-}z} + L_{c\text{-}z} + Q_{P(c\text{-}z)}$$

faisant la notation ξ_Z =1- ϕ_z , dont ξ_Z est le coefficient de l'utilisation de la chaleur (voir le tableau suivant), ϕ_z étant la partie de chaleur disponible pendant la combustion (l'intervalle c-z : $Q_{p,c-z}$ = ϕ_z .Q) perdue aux parois , cette relation devient :

$$\xi_{Z}$$
. Q= $\Delta U_{c-z} + L_{c-z}$

Le type de mote	ξz		
****	Combusti	0,800,95	
MAC	Combusti	Combustible gazeux	
	Semi-rap	Semi-rapide	
WD	D ==: d =	Injection directe	0,700,88
	Rapide	Injection indirecte	0,650,80

Tableau V.12 : Le coefficient d'utilisation de la chaleur

Les termes de cette équation sont :

la variation de l'énergie interne :

$$\begin{split} \Delta U_{c\text{-}z} &= U_z \text{ - } U_c \\ Ou: & & \text{T_z} \\ U_z &= (N_F + N_g).C_v & & \text{T_z} \\ \end{split}$$

 $U_c = (N_o + N_g).C_v$

Le travail mécanique :

$$L_{c\text{--}z} = R_M \; [(N_f + N_g).T_Z - \lambda_P. \; (N_o + N_g).T_C]$$

Le rapport d'accroissement de la pression pendant la combustion $\lambda_{P}a$ des valeurs selon le type de la chambre de combustion :

MD rapide à injection directe en volume (injection multiple) : $\lambda_P = 1,5...2,0$.

MD rapide à injection directe sur paroi : $\lambda_P = 1,3...1,7$.

MD à injection indirecte : $\lambda_P = 1, 1...1, 4$.

MD semi-rapide : $\lambda_P = 1, 1 \dots 1, 7$.

On peut obtenir encore ce rapport : λ_P introduisant une condition de limiter la pression maximum du cycle p_z , en fonction des particularités constructives de la chambre de combustion, de la pression de suralimentation, du taux de compression, etc.

Remplaçant dans la relation (A)de la quantité de chaleur dégagée par combustion ξ_{Z} . Qles relations précédentes, on obtient :

$$\frac{\xi_{z}.Q}{N_{Q}(1+\gamma)} + \left. C_{Z} \right|^{T(C)} T_{C} + \left. R_{M}.\lambda_{P}.T_{C} = \mu_{r}.T_{Z} \left[\left. C_{V} \right|^{T(Z)} \right. \\ \left. + R_{M} \right] \qquad \quad B. \label{eq:energy_equation_equation}$$

Ou $R_M = 8.314 \text{ KJ/Kmol}(\text{la constante universelle des gaz})$ et :

$$C_V|_{1+\gamma}^{T(c)} = \frac{1}{1+\gamma} [C_V|_{1+\gamma}^{T(c)} \text{ air } + \gamma \cdot C_V|_{1+\gamma}^{T(c)} \text{ gbr}].$$

Parce que:

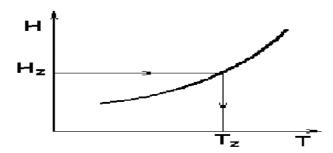
La relation (B) devient :

$$H_{Z} = \frac{\xi_{z} \cdot Q}{\mu_{r} N_{O}(1+\gamma)} + (U|^{T(C)} \operatorname{air} + \gamma \cdot U|^{T(C)} \operatorname{gbr}) / \mu_{r} \cdot (1+\gamma) + (R_{M} \cdot \lambda_{P} \cdot T_{C}) / \mu_{r} \qquad c.$$

Connaissant les produit de combustion – N_{CO2} , N_{CO} , N_{H2O} , N_{O2} , N_{N2} - à chaque type de mélange on peut déterminer la composition des gaz brulés (les participations volumétrique \mathbf{r}_i des gaz composants dans le mélange des gaz brulés) :

$$r_{CO2} = \frac{N_{CO2}}{N_f}$$
 $r_{CO} = \frac{N_{CO}}{N_f}$ $r_{H2O} = \frac{N_{H2O}}{N_f}$

$$r_{O2} = \frac{N_{O2}}{N_f}$$
 $r_{N2} = \frac{N_{N2}}{N_f}$


Ayant la composition des gaz brulés et les enthalpies molaires des ceux —ci (tableau suivant) on peut déterminer la variation de l'enthalpie molaires du mélange des gaz brulés en fonction de la température.

On peut, maintenant, déterminer dans cette figure la température des gaz brulés à la fin de combustion T_Z (le point z).

Т	A:	IR .	C	02	Н	2 <mark>0</mark>	C)2	N	l ₂	С	0	H	12
K	U	Н	U	Н	U	Н	U	Н	U	Н	U	Н	U	Н
1 500	35 033	47 504	58 615	71 086	45 700	58 172	36 736	49 207	34 585	47 056	34 890	47 483	32 220	44 691
1600	37 744	51 049	63 666	76 962	49 634	62 938	39 569	52 873	37 255	50 559	37 711	51 011	34 639	47 939
1700	40 469	54 606	68 755	82 888	53 656	67 792	42 427	56 564	39 946	54 083	40 440	54 577	37 096	51 229
1 800	43 223	58 192	73 890	88 856	57 766	64 361	45 311	60 277	42 666	57 636	43 189	58 155	39 590	54 556
1 900	45 993	61792	79 067	94 866	61 955	77 753	48 215	64 014	45 407	61 206	45 951	61750	42 122	57 920
2 000	48 789	65 420	84 278	100 904	66 215	82 846	51 149	67 776	48 165	64 796	48 734	65 366	44 692	61 323
2 100	51 601	69 065	89 526	106 985	70 555	88 019	54 104	71 574	50 936	68 400	51 534	68 994	47 299	64 759
2 200	54 426	72 719	94 803	113 099	74 949	93 246	57 079	75 376	53 723	72 020	54 346	72 652	49 940	68 232
2 300	57 272	76 397	100 105	119 231	79 394	98 519	60 076	79 201	56 527	75 652	57 167	76 293	52 605	71727
2 400	60 126	80 084	105 433	125 391	83 888	103 847	63 093	83 047	59 339	79 297	60 000	79 954	55 296	75 250
2 500	62 997	83 784	110 777	131 564	88 425	109 212	66 127	86 914	62 164	82 951	62 846	83 633	58 017	78 803
2 600	65 872	87 492	116 142	137 762	93 020	114 640	69 186	90 806	64 997	86 717	65 700	87 230	60 762	82 382
2 700	68 768	91 220	121 536	143 985	97 657	120 109	72 271	94 719	67 839	90 287	68 563	91 011	63 537	85 985
2 800	71 668	94 949	126 952	150 233	102 331	125 613	75 372	98 653	70 685	93 970	71 434	94 115	66 290	89 605
2 900	74 577	98 695	132 380	156 494	107 036	131 154	78 490	102 603	73 543	99 502	74 303	98 423	69 140	93 250
3 000	77 502	102 449	137 812	167 759	111 769	136 711	81 616	106 567	76 406	101 352	77 192	102 135	71 974	96 916

Tableau V.13 : L'énergie interne spécifique molaire U et l'enthalpie spécifique molaire H des gaz en fonction de température, en KJ/Kmoles.

Le diagramme H=f(T) pour déterminer la température à la fin de combustion T_Z (cas du moteur diesel).

On peut adopter et une autre manière de déterminer cette température à la fin de la combustion T_Z :

On fait le calcul de l'enthalpie des gaz brulés H^{Ti} à différentes température recommandées pour la fin de la combustion, commençant avec la plus petite valeur de celle-ci.

On fait l'interpolation entre les deux enthalpies H^{Ti} entre lesquelles s'encadre l'enthalpie H_z.

Résulte la température T_z.

Par exemple:

La plus petite valeur de cette température est 1800K; on fait le calcul de l'enthalpie à cette température H^{1800} :

$$\mathbf{H}^{1800} = \sum_{i} \mathbf{r_{1.}} H_{i}^{1800} = \mathbf{r_{C02}} . H_{C02}^{1800} + \mathbf{r_{H2O}} . H_{H2O}^{1800} + \mathbf{r_{N2}} . H_{N2}^{1800} + \mathbf{r_{O2}} . H_{O2}^{1800}$$

Si cette enthalpie est inférieure à l'enthalpie H_Z, la température T_z est plus grande que 1800K.

On fait le calcul de l'enthalpie à la température de 1900K H¹⁹⁰⁰:

$$\mathbf{H}^{1900} = \sum \mathbf{r_{1.}} H_{i}^{1900} = \mathbf{r_{CO2}} . H_{CO2}^{1900} + \mathbf{r_{H2O}} . H_{H2O}^{1900} + \mathbf{r_{N2}} . H_{N2}^{1900} + \mathbf{r_{O2}} . H_{O2}^{1900}$$

Si cette enthalpie est supérieure à l'enthalpie Hz, la température Tzest plus petite que 1900K.

On fait l'interpolation entre les deux enthalpies H^{1800} et H^{1900} entre les quelles s'encadre l'enthalpie H_Z .

Résulte la température T_Z, une valeur entre 1800K et 1900K.

De l'équation d'état dans les points cet z on obtient le taux de détente préalable g_{dp} :

$$Q_{\rm dp} = \frac{\mu_{\rm r}}{\lambda_{\rm p}} \cdot \frac{T_{\rm Z}}{T_{\rm C}}$$

Connaissant le rapport d'accroissement de la pression pendant la combustion λ_p (rapport choisi pendant le calcul de la combustion) on peut déterminer la pression à la fin de la combustion p_z (cette relation s'applique seulement pour le moteur diesel) :

$$p_z = \lambda_p . p_c$$

Dans le cas du moteur à allumage commandé, ϱ_{dp} =1et on obtient :

$$\lambda_p = \mu_r \cdot \frac{T_Z}{T_C}$$

Et la relation (C) devient :

$$U_Z = \frac{\xi_{z}.\textit{Q}}{\mu_r.\textit{N}_0.(1\!+\!\gamma)} + \frac{\textbf{U}^{TC} \text{air} \!+\! \gamma \textbf{U}^{TC} \text{gbr}}{\mu_r.(1\!+\!\gamma)}$$

Connaissant la composition des gaz brulés (la participation volumétriques r_i des gaz composants dans le mélange des gaz brulés) et les énergies molaires des ceux -ci (tableau suivant) on peut déterminer la variation de l'énergie molaire du mélange des gaz brulés en fonction de la température.

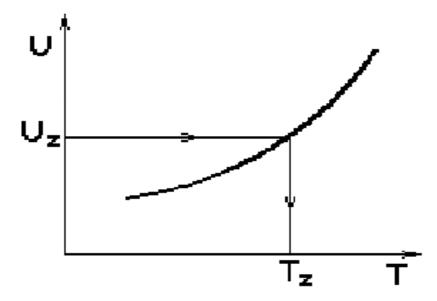

Т	A:	IR .	C) ₂	H	0	0)2	١	l ₂	С	0	H	2
K	U	Н	U	I	0	Н	0	Н	U	Н	0	Н	U	Н
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200	4 139	5 805	4 269	5 930	4 955	6 616	4 097	5 759	4 147	5 599	4 152	5 813	4 030	5 692
300	6 215	8 713	6 993	9 492	7 541	10 036	6 206	8 700	6 219	8 717	6 219	8 717	6 014	8 508
400	8 320	11 626	10 082	13 409	10 102	13 429	8 349	11 676	8 303	11 626	8 311	11 638	8 077	11 404
500	10 441	14 597	13 538	17 694	12 760	16 916	10 563	14 719	10 412	14 576	10 425	14 581	10 165	14 321
600	12 634	17 623	17 297	22 285	15 480	20 469	12 890	17 878	12 563	17 552	12 601	17 590	12 258	17 246
700	14 886	20 707	21 314	27 131	18 347	24 165	15 313	21 134	14 777	20 594	14 853	20 670	14 363	20 184
800	17 209	23 859	25 524	32 174	21 331	27 981	17 816	24 344	17 050	23 700	17 171	23 825	16 485	23 139
900	19 594	27 077	29 906	37 393	24 436	31 919	20 389	27 872	19 385	26 871	19 561	27 043	18 623	26 110
1 000	22 047	30 362	34 443	42 758	27 696	36 012	23 013	31 329	21 791	30 111	21 971	30 287	20 791	29 107
1 100	24 562	33 706	39 100	48 249	31 036	40 180	25 696	34 840	24 265	33 409	24 491	33 639	23 001	31 727
1 200	27 131	37 108	43 863	53 840	34 535	44 512	28 412	38 389	26 788	36 748	27 085	37 062	25 248	35 225
1 300	29 726	40 536	48 705	59 515	38 150	48 960	31 157	41 967	29 349	40 159	29 693	40 498	27 533	38 343
1 400	32 371	44 014	53 627	65 156	41 875	53 518	33 928	45 575	31 948	43 591	32 337	43 976	29 852	41 490

Tableau V.14 : L'énergie interne spécifique molaires U et l'enthalpie spécifique molaire H des gaz en fonction de température, en KJ/Kmoles.

Т	A:	IR	C	O ₂	H	2 <mark>0</mark>	C)2	N	l ₂	С	0	H	12
K	U	Н	U	Н	U	Н	U	Н	U	Н	U	Н	U	Н
1 500	35 033	47 504	58 615	71 086	45 700	58 172	36 736	49 207	34 585	47 056	34 890	47 483	32 220	44 691
1 600	37 744	51 049	63 666	76 962	49 634	62 938	39 569	52 873	37 255	50 559	37 711	51 011	34 639	47 939
1700	40 469	54 606	68 755	82 888	53 656	67 792	42 427	56 564	39 946	54 083	40 440	54 577	37 096	51 229
1 800	43 223	58 192	73 890	88 856	57 766	64 361	45 311	60 277	42 666	57 636	43 189	58 155	39 590	54 556
1 900	45 993	61 792	79 067	94 866	61 955	77 753	48 215	64 014	45 407	61 206	45 951	61 750	42 122	57 920
2 000	48 789	65 420	84 278	100 904	66 215	82 846	51 149	67 776	48 165	64 796	48 734	65 366	44 692	61 323
2 100	51 601	69 065	89 526	106 985	70 555	88 019	54 104	71 574	50 936	68 400	51 534	68 994	47 299	64 759
2 200	54 426	72 719	94 803	113 099	74 949	93 246	57 079	75 376	53 723	72 020	54 346	72 652	49 940	68 232
2 300	57 272	76 397	100 105	119 231	79 394	98 519	60 076	79 201	56 527	75 652	57 167	76 293	52 605	71727
2 400	60 126	80 084	105 433	125 391	83 888	103 847	63 093	83 047	59 339	79 297	60 000	79 954	55 296	75 250
2 500	62 997	83 784	110 777	131 564	88 425	109 212	66 127	86 914	62 164	82 951	62 846	83 633	58 017	78 803
2 600	65 872	87 492	116 142	137 762	93 020	114 640	69 186	90 806	64 997	86 717	65 700	87 230	60 762	82 382
2 700	68 768	91 220	121 536	143 985	97 657	120 109	72 271	94 719	67 839	90 287	68 563	91 011	63 537	85 985
2 800	71 668	94 949	126 952	150 233	102 331	125 613	75 372	98 653	70 685	93 970	71 434	94 115	66 290	89 605
2 900	74 577	98 695	132 380	156 494	107 036	131 154	78 490	102 603	73 543	99 502	74 303	98 423	69 140	93 250
3 000	77 502	102 449	137 812	167 759	111 769	136 711	81 616	106 567	76 406	101 352	77 192	102 135	71 974	96 916

Tableau V.15 : L'énergie interne spécifique molaire U et l'enthalpie spécifique molaire H des gaz en fonction de température, en KJ/Kmoles.

Le diagramme U=f(T) pour déterminer la température à la fin de combustion $T_Z(cas\ du\ moteur\ à$ allumage commandé).

On peut faire le calcul de cette température comme dans le cas du moteur diesel à la fin de la combustion T_z comme dans le cas du moteur diesel :

on fait le calcul des énergies internes des gaz brulés U^{Ti} à différentes température recommandées pour la fin de la combustion, commençant avec la plus petite valeur de celle-ci.

On fait l'interpolation entre les deux énergies internes U^{Ti} entre lesquelles s'encadre l'énergie interne U_Z .

Résulte la température T_Z.

Par exemple:

La plus petite valeur de cette température est 2400K; on fait le calcul de l'énergie interne à cette température, U^{2400} :

$$\mathbf{U}^{2400} = \sum_{i} \mathbf{r_{1.}} H_{i}^{2400} = \mathbf{r_{CO2}} H_{CO2}^{2400} + \mathbf{r_{H2O}} H_{H2O}^{2400} + \mathbf{r_{N2}} H_{N2}^{2400} + \mathbf{r_{O2}} H_{CO}^{2400}$$

Si cette énergie interne est inférieure à l'énergie interne U_Z , la température T_Z est plus grande que 2400K.

On fait le calcul de l'énergie interne à la température de 2500K, U²⁵⁰⁰:

$$\mathbf{U}^{2500} = \sum_{i} \mathbf{r_{1.}} H_{i}^{2500} = \mathbf{r_{C02}} . H_{CO2}^{2500} + \mathbf{r_{H2O}} . H_{H2O}^{2500} + \mathbf{r_{N2}} . H_{N2}^{2500} + \mathbf{r_{O2}} . H_{CO}^{2500}$$

si cette énergie interne est supérieure à l'énergie interne U_Z , la température T_Z est plus petite que 2500K.

On fait l'interpolation entre les deux énergies internes U^{2400} et U^{2500} entre lesquelles s'encadre l'énergie interne U_Z .

Résulte la température T_Z, une valeur entre 2400K et 2500K.

on peut déterminer dans cette figure la température T_Z des gaz brulés à la fin de combustion, et puis leur pression P_Z (cette relation s'applique seulement pour le moteur à allumage commandé) :

$$P_Z=p_c$$
 . $\mu_r \cdot \frac{T_Z}{T_C}$

Le type de	e moteur	p _z [MPa]	T _z [K]
MAC		3,57,5 a)	24003000
MD	Injection directe	6,012,5 b)	18002800
MO	Injection indirecte	6,08,5 c)	

Tableau V.16 : Valeur recommandées pour p_z et T_Z

- a) aux moteurs sport (ξ >10,5) p_z \leq 110 bar.
- b) aux moteurs suralimentés p_z≤200 bar.
- c) aux moteurs suralimentés) p_z≤120 bar.

application moteur a allumage commande - admission naturelle MAC-AN

Données MAC-AN

carburant: essence.

Température de la charge fraiche à la fin de compression :T_C=712,39 K.

Pression de la charge fraiche à la fin de compression : p_c=2,15 MPa(ou p_c=2,15bar).

Masse moléculaire de l'essence :M_{cb}=114 kg/Kmol.

Coefficient des gaz brulés résiduels : y=0,05.

Valeurs choisies MAC-AN:

Composition gravimétrique de l'essence 85,4% - c ; 14,2%-h ; 0,4%-O.

Pouvoir calorifique inférieur : PCI : 43529 KJ/Kg cb.

Coefficient d'excès d'air : λ =0,9 (λ =0,85...0,95).

Coefficient d'utilisation de la chaleur : ξ_Z =0,85(ξ_Z =0,80...0,95).

Calcul de l'air stœchiométrique A_S et réel A nécessaire à la combustion et le nombre de Kmol de charge fraiche N_0 MAC-AN :

$$A_s = \frac{1}{0.21} \cdot \left[\frac{c}{12} + \frac{h}{4} - \frac{o}{32} \right] = \frac{1}{0.21} \cdot \left[\frac{0.854}{12} + \frac{0.142}{4} - \frac{0.004}{32} \right] = 0,5073 \frac{\text{Kmol}}{\text{Kg cb}}$$

$$A=\lambda.A_S=0, 9.0, 5073=0, 4566\frac{Kmol}{Kg cb}$$

$$N_0 = \lambda A_S + \frac{1}{M_{ch}} = 0, 9.0, 5073 + \frac{1}{114} = 0, 4653 \frac{\text{Kmol}}{\text{Kg cb}}$$

Calcul des produits de combustion N_{CO2}, N_{CO}, N_{N2}, N_{H2O} (mélange riche)

MAC-AN:

$$N_{CO2} = \frac{c}{12} - 0.42.(1 - \lambda).A_S = \frac{0.854}{12} - 0.42.(1 - 0.9).0.5073 = 0.0498 \frac{\text{Kmol CO}_2}{\text{Kg cb}}.$$

$$N_{CO}$$
=0,42.(1- λ). A_{S} =0,42.(1-0,9).0,5073=0,0213 $\frac{\text{Kmol CO}}{\text{Kg cb}}$.

$$N_{\rm H2O} = \frac{h}{2} = \frac{0.142}{2} = 0.071 \frac{\rm Kmol \ N_2}{\rm Kg \ cb}.$$

$$N_{N2}$$
=0,79. λ . A_S =0,79.0, 9.0, 5073=0,3607 $\frac{\text{Kmol H}_2\text{O}}{\text{Kg cb}}$.

La quantité finale des gaz brulés $N_{\rm f}$ (mélange riche) :

$$N_F = \frac{c}{12} + \frac{h}{2} + 0, 79. \ \lambda. A_s = \frac{0.854}{12} + \frac{0.142}{2} + 0, 79. \ 0, 9. \ 0, 5073 = 0, 5028 \frac{Kmol}{Kg\ cb}.$$

Le coefficient chimique de variation molaire μ_{ch} :

$$\mu_{ch} = \frac{N_f}{N_O} = \frac{0,5028}{0,4653} = 1,080.$$

Le coefficient réel de variation molaire μ_r :

$$\mu_{r} = \frac{\mu_{ch} + \gamma}{1 + \gamma} = \frac{1,08 + 0,06}{1 + 0,06} = 1,075.$$

La quantité de chaleur dégagée par la combustion incomplète du carburant (mélange riche) Q_{in} :

$$Q_{in} = PCI - 119538. (1 - \lambda) .A_S =$$

$$= 43529 - 119538$$
. $(1 - 0, 9)$. $0, 5073 =$

$$= 37464, 34$$
 KJ/Kg cb

$$r_{CO2} = \frac{N_{CO2}}{N_f} = \frac{0,0498}{0,5028} = 0,099$$

$$r_{CO} = \frac{N_{CO}}{N_f} = \frac{0.0213}{0.5028} = 0.042$$

$$r_{N2} = \frac{N_{N2}}{N_f} = \frac{0.3607}{0.5028} = 0.718$$

$$r_{H2O} = \frac{N_{H2O}}{N_f} = \frac{0.071}{0.5028} = 0.141$$

$$\sum r_i = 0.099 + 0.042 + 0.718 + 0.141 = 1$$

L'énergie interne de la charge fraiche à la fin de compression ($T_C = 712,39 \text{ K}$) U_{air}^{Tc} :

$$T = 700 \text{ K}$$

$$U_{air} = 14886 \text{ KJ/Kmol}$$

$$T = 800 \text{ K}$$

$$U_{air} = 17209 \text{ KJ/Kmol}$$

$$\Delta T = 800 - 700 = 100 \dots$$

$$\Delta U = U^{800}_{air} - U^{700}_{air} = 2323$$

$$\Delta T' = 712,39 - 700 = 12,39 \dots \Delta U' = ??$$

$$\Delta U' = \frac{\Delta T' \cdot \Delta U}{\Delta T} = \frac{12,39.2323}{100} = 287,8 \text{ KJ/Kmol}$$

$$U^{\text{Tc}}_{\text{air}} = U^{712,39}_{\text{air}} = U^{700}_{\text{air}} + \Delta \ U = 14886 + 287,8 = 15173,8 \ \text{KJ/Kmol}$$

$$T = 712.39 \text{ K}$$

$$U_{air} = 15173.8 \text{ KJ/Kmol}$$

L'énergie interne des gaz brulés résiduels à la fin de compression ($T_c = 712,39$):

$$T = 700 \text{ K}$$

$$U_{CO2} = 21314 \text{ KJ/Kmol}$$

T = 800 K $U_{CO2} = 25524 \text{ KJ/Kmol}$ T = 712,39 K $U_{CO2} = 21835,6 \text{ KJ/Kmol}$ T = 700 K $U_{CO} = 14853 \text{ KJ/Kmol}$ T = 800 K $U_{CO} = 17171 \text{ KJ/Kmol}$ T = 712,39 K $U_{CO} = 15140,2 \text{ KJ/Kmol}$ T = 700 K $U_{N2} = 14777 \text{ KJ/Kmol}$ T = 800 K $U_{N2} = 17050 \text{ KJ/Kmol}$ $U_{N2} = 15058,6 \text{ KJ/Kmol}$ T = 712,39 KT = 700 K $U_{H2O} = 18347 \text{ KJ/Kmol}$ T = 800 K $U_{H2O} = 21331 \text{ KJ/Kmol}$ T = 712,39 K $U_{H2O} = 18716,7 \text{ KJ/Kmol}$

L'énergie interne des gaz brulés résiduels à la fin de compression

$$(T_C = 712,39 \text{ K})$$
:

$$\begin{split} &U^{Tc}_{gbr} = U^{712,39}_{gbr} = \sum r_i \cdot U_i^{Tc} = \sum r_i \cdot U_i^{712,39} = \\ &= r_{CO2} \cdot U_{CO2}^{712,39} + r_{CO} \cdot U^{712,39}_{CO} + r_{N2} \cdot U^{712,39}_{N2} + r_{H2O} \cdot U^{712,39}_{H2O} = \\ &= 0,099 \cdot 21835,6 + 0,042 \cdot 15140, 2 + 0,718 \cdot 15058, 6 + 0,141 \cdot 18716, 7 = 16248, \\ &= 0,099 \cdot 21835,6 + 0,042 \cdot 15140, 2 + 0,718 \cdot 15058, 6 + 0,141 \cdot 18716, 7 = 16248, \\ &= 0,099 \cdot 21835,6 + 0,042 \cdot 15140, 2 + 0,718 \cdot 15058, 6 + 0,141 \cdot 18716, 7 = 16248, \\ &= 0,099 \cdot 21835,6 + 0,042 \cdot 15140, 2 + 0,718 \cdot 15058, 6 + 0,141 \cdot 18716, 7 = 16248, \\ &= 0,099 \cdot 21835,6 + 0,042 \cdot 15140, 2 + 0,718 \cdot 15058, 6 + 0,141 \cdot 18716, 7 = 16248, \\ &= 0,099 \cdot 21835, 6 + 0,042 \cdot 15140, 2 + 0,718 \cdot 15058, 6 + 0,141 \cdot 18716, 7 = 16248, \\ &= 0,099 \cdot 21835, 6 + 0,042 \cdot 15140, 2 + 0,718 \cdot 15058, 6 + 0,141 \cdot 18716, 7 = 16248, \\ &= 0,099 \cdot 21835, 6 + 0,042 \cdot 15140, 2 + 0,718 \cdot 15058, 6 + 0,141 \cdot 18716, 7 = 16248, \\ &= 0,099 \cdot 21835, 6 + 0,042 \cdot 15140, 2 + 0,718 \cdot 15058, 6 + 0,141 \cdot 18716, 7 = 16248, \\ &= 0,099 \cdot 21835, 6 + 0,042 \cdot 15140, 2 + 0,718 \cdot 15058, 6 + 0,141 \cdot 18716, 7 = 16248, \\ &= 0,099 \cdot 21835, 6 + 0,042 \cdot 15140, 2 + 0,718 \cdot 15058, 6 + 0,141 \cdot 18716, 7 = 16248, \\ &= 0,099 \cdot 21835, 6 + 0,042 \cdot 15140, 2 + 0,718 \cdot 15058, 6 + 0,141 \cdot 18716, 7 = 16248, \\ &= 0,099 \cdot 21835, 6 + 0,042 \cdot 15140, 2 + 0,718 \cdot 15058, 6 + 0,141 \cdot 18716, 7 = 16248, \\ &= 0,099 \cdot 21835, 6 + 0,042 \cdot 15140, 2 + 0$$

76 KJ/Kmols

L'énergie interne des gaz brulés à la fin de combustion Uz (MAC-AN)

$$\begin{split} &U_Z = \frac{\xi_z.Q_{in}}{\mu_r.N_0.(1+\gamma)} + \frac{U^{TC}air + \gamma U^{TC}gbr}{\mu_r.(1+\gamma)} = \\ &= \frac{0.85.37646.34}{1.075.0.4653.1.006} + \frac{15173.8 + 0.06.16248.76}{1.075.1.006} = 78524 \text{ KJ/Kmol} \end{split}$$

La température des gaz brulés à la fin de combustion T_Z(MAC-AN)

$$U^{2400} = \sum r_i \cdot U_i^{2400} = r_{C02} \cdot U^{2400}_{CO2} + r_{CO} \cdot U^{2400}_{CO} + r_{N2} \cdot U^{2400}_{N2} + r_{H2O} \cdot U^{2400}_{H2O} = 0,099. \ 105433 + 0,042. \ 60000 + 0,718. \ 59339 + 0,141. \ 83888 =$$

= 67391,477 KJ/Kmol < (78524)

$$U^{2600} = \sum r_i \; . \; U_i^{2600} = r_{C02} \; . \; U^{2600}_{CO2} + r_{CO} \; . \; U^{2600}_{CO} + r_{N2} \; . \; U^{2600}_{N2} + r_{H2O} \; . \; U^{2600}_{H2O} = r_{CO2} \; . \; U^{2600}_{CO2} + r_{CO} \; . \; U^{2600}_{CO2}$$

= 0.099. 116142 + 0.042. 65700 + 0.718. 64997 + 0.141. 93020 =

 $= 74041,124 \text{ KJ/Kmol} < U_z (78524)$

$$\mathbf{U}^{2700} = \sum r_i \; . \; \mathbf{U_i}^{2700} = \mathbf{r_{C02}} \; . \; \mathbf{U}^{2700}_{CO2} + \mathbf{r_{CO}} \; . \; \mathbf{U}^{2700}_{CO} + \mathbf{r_{N2}} \; . \; \mathbf{U}^{2700}_{N2} + \mathbf{r_{H2O}} \; . \; \mathbf{U}^{2700}_{H2O} = \mathbf{v_{C02}} \; . \; \mathbf{U}^{2700}_{CO2} + \mathbf{v_{C02}} \; . \; \mathbf{U}^{2700}_{CO2} + \mathbf{v_{C02}} \; . \; \mathbf{U}^{2700}_{N2} + \mathbf{v_{H2O}} \; . \; \mathbf{U}^{2700}_{H2O} = \mathbf{v_{C02}} \; . \; \mathbf{U}^{2700}_{H2O} + \mathbf{v_{C02}$$

 $= 0,099.\ 121536 + 0,042.\ 68563. + 0,718.\ 67839 + 0,141.\ 97657 =$

 $= 77389,749 \text{ KJ/Kmol} < U_Z (78524)$

$$\mathbf{U}^{2800} = \sum r_i \; . \; \mathbf{U_i}^{2800} = \mathbf{r_{C02}} \; . \; \mathbf{U}^{2800}_{CO2} + \mathbf{r_{CO}} \; . \; \mathbf{U}^{2800}_{CO} + \mathbf{r_{N2}} \; . \; \mathbf{U}^{2800}_{N2} + \mathbf{r_{H2O}} \; . \; \mathbf{U}^{2800}_{H2O} =$$

= 0,099.126952 + 0,042.71434 + 0,718.70685 + 0,141.102331 =

 $= 80748,977 \text{ KJ/Kmol} > U_Z (78524)$

 $T_{\mathbf{Z}}$

$$\Delta T = 2800 - 2700 = 100 \dots \Delta U = U^{2800} - U^{2700} = 80748,977 - 77389,749 = =3359,228$$

X
$$\Delta U' = U^{2800} - U_Z = 78524 - 77389,749 = 1132,251$$

$$X = \frac{1132,251.100}{3359.288} = 33,7 \text{ K}$$

$$T_Z = 2700 + X = 2700 + 33, 7 = 2733, 7 K$$

Ou:

$$T = 2800 - 2700 = 100 \dots \Delta U = U^{2800} - U^{2700} = 80748,977 - 77389,749 = 3359, 228$$

$$X \dots \Delta U = U^{2800} - U_Z = 80748,977 - 78524 = 2224,977$$

$$X = \frac{2224,977.100}{3359,288} = 66,3 \text{ K}$$

$$T_Z = 2800 - X = 2800 - 66,3 = 2733,7 \text{ K}$$

Valeurs recommandées: T_z = 24003000 K

La pression des gaz brulés à la fin de combustion pz:

$$P_z = p_c. \; \mu_r. \frac{T_Z}{T_C} = 2,15. \; 1,075. \; \frac{2733,7}{712,39} = 8,87 \; MPa$$

$$P_z = 8,87 \text{ MPa} = 88,7 \text{ bar}$$

Valeurs recommandées : p_z = 3,511,0 MPa

Le rapport d'accroissement de la pression pendant la combustion λ_p :

$$\lambda_p = \mu_r. \frac{T_Z}{T_C} = 1,075. \frac{2733,7}{712,39} = 4,125$$

Application moteur diesel suralimenté MD – TS

Données MD - TS

Carburant: gazole.

Température de la charge fraiche à la fin de compression : $T_c = 968.9 \text{ K}$.

Pression de la charge fraiche à la fin de compression : $p_c = 11.81$ MPa (ou $p_c = 118.1$ bar).

Coefficient des gaz brulés résiduels : y = 0.024.

Valeurs choisies MD – TS:

Composition gravimétrique de gazole :

Pouvoir calorifique inférieur : PCI = 41 855 KJ/Kg cb.

On adopte l'injection directe.

Coefficient d'excès d'air : $\lambda = 1,7$.

$$\lambda = 1,50 \dots 2,00 - injection directe$$

$$\lambda = 1, 30 \dots 1,70$$
 - injection indirecte

Coefficient d'utilisation de la chaleur : $\xi_Z = 0.8$

$$\xi_z = 0.70 \dots 0.88 - injection directe$$

Rapport d'agrandissement de la pression pendant la combustion :

$$\lambda_p = 1, 1, \dots, 1, 4 - \text{injection indirecte}$$

Calcul de l'air stœchiométrique A_s et réel A nécessaire à la combustion et le nombre de Kmol de charge fraiche N_O MD-TS :

$$A_{s} = \frac{1}{0.21} \cdot \left[\frac{c}{12} + \frac{h}{4} - \frac{o}{32} \right] = \frac{1}{0.21} \cdot \left[\frac{0.857}{12} + \frac{0.133}{4} - \frac{0.01}{32} \right] = 0, 4966 \frac{\text{Kmol}}{\text{Kg cb}}$$

$$A = \lambda$$
. $A_s = 1, 7.0, 4966 = 0,844 \frac{Kmol}{Kg cb}$

$$N_O = A = \lambda$$
. $A_S = 1, 7.0, 4966 = 0.844 \frac{Kmol}{Kg cb}$

Calcul des produits de combustion N_{CO2}, N_{H2O}, N_{N2}, N₀₂ (mélange riche)

MD – TS:

$$N_{\rm CO2} = \frac{c}{12} = \frac{0,857}{12} = 0,0714 \; \frac{\mbox{Kmol CO}_2}{\mbox{Kg cb}}$$

$$N_{H2O} = \frac{h}{2} = \frac{0,142}{2} = 0,071 \frac{\text{Kmol H}_2\text{O}}{\text{Kg cb}}$$

$$N_{N2} = 0, \ 79. \ \lambda. \ A_S. = 0, \ 79. \ 1, \ 7. \ 0, \ 4966 = 0, \ 6669 \ \frac{\text{Kmol N}_2}{\text{Kg cb}}$$

$$N_{02} = 0, 21. (\lambda - 1). A_s = 0, 21. (1, 7 - 1). 0, 4966 = 0,073 \frac{\text{Kmol O}_2}{\text{Kg cb}}$$

La quantité finale des gaz brulés N_f (mélange riche) :

$$N_f = N_{C02} + N_{H2O} + N_{N2} + N_{O2} = 0.882 \frac{\text{Kmol}}{\text{Kg cb}}$$

Le coefficient chimique de variation molaire μ_{ch} :

$$\mu_{\rm ch} = \frac{N_f}{N_O} = \frac{0.882}{0.844} = 1.045$$

le coefficient réel de variation molaire μ_r :

$$\mu_{\rm r} = \frac{\mu_{ch+\gamma}}{1+\gamma} = \frac{1,045+0,024}{1+0,024} = 1,044$$

La quantité de chaleur dégagée par la combustion du carburant (mélange pauvre $\lambda > 1$) Q_i (MD - TS) :

$$Q_i = PCI = 41855 \text{ KJ/Kg cb}$$

La composition des gaz brulés (mélange pauvre) :

$$\mathbf{r}_{co2} = \frac{N_{CO2}}{N_f} = \frac{0.0714}{0.8823} = 0,0809$$

$$\mathbf{r_{H2O}} = \frac{\mathbf{N_{H2O}}}{\mathbf{N_f}} = \frac{\mathbf{0.071}}{\mathbf{0.88823}} = 0,0805$$

$$\mathbf{r}_{N2} = \frac{N_{N2}}{N_{f}} = \frac{0.6669}{0.8823} = 0,7559$$

$$\mathbf{r_{O2}} = \frac{N_{O2}}{N_f} = \frac{0.073}{0.88823} = 0,0827$$

$$\sum r_i = 0,0809 + 0,0805 + 0,7559 + 0,0827 = 1$$

l'énergie interne de la charge fraiche à la fin de compression ($T_C = 968.9 \text{ K}$) U_{air}^{Tc} :

$$T = 900 \text{ K}$$
 $U_{air} = 19594 \text{ KJ/Kmol}$

$$T = 1000 \text{ K}$$
 $U_{air} = 22047 \text{ KJ/Kmol}$

$$\Delta T = 1000-900 = 100 \dots \Delta U = U_{air}^{1000} - U_{air}^{900}$$

 $\Delta T '= 968,9 - 900 = 68,9 \dots \Delta U' = ? = 2453$

$$T = 968,9 \text{ K}$$
 $U_{air} = 21968,5 \text{ KJ/Kmol}$

$$\Delta U' = \frac{\Delta T'. \ \Delta U}{\Delta T} = \frac{96,8.2453}{100} = 2374,5 \ \text{KJ/Kmol}$$

$$U_{air}^{Tc} = U_{air}^{968,9} = U_{air}^{900} + \Delta U' = 19594 + 2374, 5 = 21968, 5 \ \text{KJ/Kmol}$$

L'énergie interne des gaz brulés résiduels à la fin de compression (T_c=968,9K) :

T = 900 K $U_{CO2} = 29906 \text{ KJ/Kmol}$

T = 1000 K $U_{CO2} = 34443 \text{ KJ/Kmol}$

T = 968,9 K $U_{CO2} = 33032 \text{KJ/Kmol}$

T = 900 K $U_{H2O} = 24436 \text{ KJ/Kmol}$

T = 1000 K $U_{H2O} = 27696 \text{ KJ/Kmol}$

T = 968.9 K $U_{H2O} = 26682.14 \text{ KJ/Kmol}$

T = 900 K $U_{N2} = 19385 \text{ KJ/Kmol}$

T = 1000 K $U_{N2} = 21791 \text{ KJ/Kmol}$

T = 968,9 K $U_{N2} = 21042,73 \text{ KJ/Kmol}$

T = 900 K $U_{O2} = 20389 \text{ KJ/Kmol}$

T = 1000 K $U_{O2} = 23013 \text{ KJ/Kmol}$

T = 968.9 K $U_{02} = 22196.94 \text{ KJ/Kmol}$

L'énergie interne des gaz brulés résiduels à la fin de compression

$$(T_c = 968,9 \text{ K})$$
:

$$U_{gbr}^{Tc} = U_{gbr}^{968,9} = \sum_{i} r_{i} U_{i}^{Tc} = \sum_{i} r_{i} U_{i}^{968,9} = r_{CO2} U_{CO2}^{968,9} + r_{CO} U_{CO}^{968,9} + r_{N2} U_{N2}^{968,9} + r_{H20} U_{H2O}^{968,9} = 22562,09 \text{ KJ/Kmol}$$

L'enthalpie des gaz brulés à la fin de combustion H_Z (MD-TS)

$$H_{Z} = \frac{\xi_{Z}.Q_{i}}{\mu_{r}.N_{0}.(1+\gamma)} + \frac{U_{air}^{Tc} + U_{gbr}^{Tc}}{\mu_{r}.(1+\gamma)} + \frac{R_{m}.\lambda_{p}.T_{c}}{\mu_{r}} =$$

$$\frac{0,8.41855}{1,044.0,844.1,024} + \frac{21968,5+0,024}{1,044.1,024} + \frac{8,315.1,5.968,9}{1,044} = 69741,56 \frac{KJ}{Kmol}$$

La température des gaz brulés à la fin de combustion T_Z (MD-TS)

$$\begin{split} H^{1800} &= \sum_{r_i} r_i H_i^{1800} = r_{CO2} . H_{CO2}^{1800} + \\ &+ r_{CO} . H_{CO}^{1800} + r_{N2} . H_{N2}^{1800} + r_{H2O} . H_{H2O}^{1800} = \\ &0,0809.88856 + 0,0805.64361 + \\ &+ 0,7559.57636 + 0,0827.60277 = \\ &= 60921,47 \, {}^{KJ}_{Kmol} < H_z (69741,56) \\ &H^{1900} &= \sum_{r_i} . H_i^{1900} = r_{CO2} . H_{CO2}^{1900} + \\ &+ 0,0809.94866 + 0,0805.77753 + \\ &+ 0,7559.61206 + 0,0827.64014 = \\ &= 65493,35 \, {}^{KJ}_{Kmol} < H_z (69741,56) \\ &H^{2000} &= \sum_{r_i} . H_i^{2000} = r_{CO2} . H_{CO2}^{2000} + \\ &+ r_{CO} . H_{CO}^{2000} + r_{N2} . H_{N2}^{2000} + r_{H2O} . H_{H2O}^{2000} = \\ &= 0,0809.100904 + 0,0805.82846 + \\ &+ 0,7559.64796 + 0,0827.67776 = \\ &= 69416,61 \, {}^{KJ}_{Kmol} < H_z (69741,56) \\ &H^{2100} &= \sum_{r_i} . H_i^{2100} = r_{CO2} . H_{CO2}^{2100} + \\ &+ r_{CO} . H_{CO}^{2100} + r_{N2} . H_{N2}^{2100} + r_{H2O} . H_{H2O}^{2100} = \\ &= 0,0809.106985 + 0,0805.88019 + \\ &= 73378,23 \, {}^{KJ}_{Kmol} > H_z (69741,56) \\ &T_z (\text{MD-TS}): \\ &\Delta T = 2100-2000 = \Delta H = H^{2100} - H^{2000} = 73378,23 - 69416,61 = 3961,62 \\ &X & \Delta H' = H_z - H^{2000} = 69741,56 - 69416,61 = 324,95 \\ &X = \frac{\Delta H' . \Delta T}{\Delta H} = \frac{32495.100}{3961,62} = 8.02 \, K \\ &T_Z = 2000 + X = 20000 + 8,02 = 2008,2 \, K \\ \end{split}$$

Valeurs recommandèes : $T_Z = 2400 \dots 3000 \text{ K}$

$$T_Z (MD - TS)$$

Ou:

$$\Delta T = 2100 - 2000 = 100 \dots \Delta H = H^{2100} - H^{2000} = 73378,23 - 69416,61 = 3961,62$$

..... $\Delta H' = H^{2100} - H_Z = 73378,23 - 69741,56 = 3636,67$

$$X = \frac{\Delta H'.\Delta T}{\Delta H} = \frac{3636,67.100}{3961,62} = 91,8 \text{ K}$$

$$T_Z = 2100 - X = 2100 - 91,8 = 2008,2 \text{ K}$$

Valeurs recommandèes : $T_Z = 1800 \dots 2800 \text{ K}$

La pression des gaz brulés à la fin de combustion p_z (MD - TS)

$$p_z = \lambda_p$$
. $p_c = 1,5.11, 81 = 17,72$ MPa

$$p_z = 17,72 \text{ MPa} = 177,2 \text{ bars}$$

Valeurs recommandées:

$$p_z = 6.0 \dots 20.0 \text{ MPa} - \text{injection directe (TS)}$$

$$p_z = 6,O...12,5$$
 MPa – injection directe (AN)

$$p_z = 6.0 \dots 12.0 \text{ MPa} - \text{injection indirecte (TS)}$$

$$p_z = 6.0 \dots 8.5 \text{ MPa} - \text{injection indirecte (AN)}$$

Le taux de détente préalable gdp

MD - TS

$$\varrho_{dp} \!=\!\! \frac{\mu_r}{\lambda_p} \! \cdot \! \frac{T_Z}{T_c} \! = \! \frac{1,\!044}{1,\!5} \cdot \frac{2008,\!2}{968,\!9} \! = 1,\,44$$

Calcul de la detente

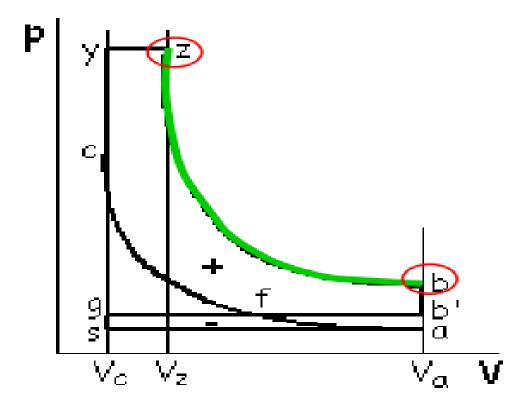


Figure 10 : phase de détente

De l'équation de la polytropique à indice constant m_d entre les états z et b on obtient :

$$\begin{aligned} p_b &= p_z . \left(\frac{\rho_{dp}}{\epsilon} \right)^{md} \\ T_b &= T_z . \left(\frac{\rho_{dp}}{\epsilon} \right)^{md\text{-}1} \end{aligned}$$

Le type de moteur	m _d	р ь [МРа]	Т ь [к]
MAC	1,251,35	0,300,6	12001700
WD	1,201,30	0,250,6	10001200

Tableau V.17 : valeurs recommandées pour les paramètres du processus de détente m_d , p_b et T_b

Application moteur à allumage commandé – admission naturelle MAC – AN:

Donnès MAC – AN:

- ✓ rapport volumètrique : $\varepsilon = 9.5$.
- ✓ température des gaz brulés à la fin de combustion : $T_Z = 2763,54$ K.
- ✓ pression des gaz brulés à la fin de combustion : $p_z = 7.33$ MPa (ou $p_z = 73.3$ bars)

Valeurs choisies MAC – AN:

l'indice polytropique pendant la détente :

$$m_d = 1,30 \ (m_d = 1,25 \dots 1,35)$$

Calcul de la température de la charge fraiche à la fin de combustion p_b et T_b

MAC - AN

$$p_b = p_z \cdot \left(\frac{\rho_{dp}}{\epsilon}\right)^{md} = 7,3. \left(\frac{1}{9,5}\right)^{1,30} = 0,4 \text{ MPa}$$

$$T_b = T_z \cdot \left(\frac{\rho_{dp}}{\epsilon}\right)^{md-1} = 2763, \, 54 \cdot \left(\frac{1}{9.5}\right)^{1,30-1} = 1447,3 \, \, \text{K}$$

valeurs recommandées:

$$p_b = 0, 30 \dots 0, 60 \text{ MPa}.$$

$$T_b = 1200 \dots 1700 \text{ K}.$$

Application moteur diesel suralimenté MD – TS

Donnès MD - TS

Rapport volumètrique: $\varepsilon = 16$.

Température des gaz brulés à la fin de combustion : $T_z = 1875 \text{ K}$.

Rapport de détente préalable : $g_{dp} = 1,324$.

Pression des gaz brulés à la fin de combustion :

$$P_z = 15,14 \text{ MPa (ou } p_z = 151,4 \text{ bars)}.$$

Valeurs choisies MD – TS:

L'indice polytropique pendant la détente :

$$M_d = 1,23 \ (m_d = 1,20 \dots 1,30)$$

Calcul de la température de la charge fraiche à la fin de combustion p_b et T_b

$$MD - TS$$

$$p_b = p_z. \left(\frac{\rho_{dp}}{\epsilon}\right)^{md} = 15,14. \left(\frac{1,324}{16}\right)^{1,23} = 0,6 \text{ MPa.}$$

$$T_b = T_z. \left(\frac{\rho_{dp}}{\epsilon}\right)^{md\text{-}1} = 1875. \left(\frac{1,324}{16}\right)^{1,23\text{-}1} = 1029 \ K.$$

Valeurs recommandées:

$$p_b = 0.25 \dots 0.60 \text{ MPa}.$$

$$T_b = 1000 \dots 1200 \text{ K}.$$

Le traçage du diagramme du cycle de référence

On choisit une échelle pour pressions (grandeurs déjà connues : p_a, p_g, p_c, p_z, p_z) et une échelle arbitraire pour volumes (l'alésage D et la course de piston S ne sont pas connus, elles seront déterminées)

A l'échelle des volumes on choisit le volume de la chambre de combustion V_C = 1unité* ; d'ici résulte V_a = $E.V_C$ = E unités et, en même temps, V_Z = $\rho_{dp}.V_C$ = V_Z . 1= ρ_{dp} unités.

(*1 unités = 10, 15, 20, ... mm, en fonction de la taille du papier millimétrique utilisé et de la valeur du rapport volumètrique).

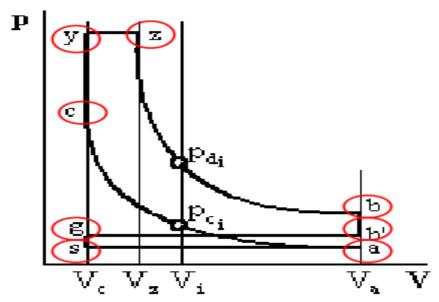


Figure 11 : points caractéristiques du diagramme du cycle mixte.

Ainsi sur le diagramme sont précisés les points caractéristiques du cycle :

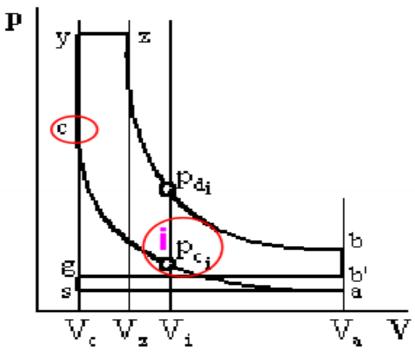


Figure 12 : points caractéristiques du diagramme du cycle en compression.

La compression sera tracée par points, écrivant l'équation de la polytropique entre le point c - la fin de la compression et i –quelconque point sur cette polytropique :

$$P_{c_i} = P_c.igg(rac{V_c}{V_i}igg)^{m_c} = rac{P_c}{igg(rac{V_i}{V_C}igg)^{m_c}} = rac{P_c}{oldsymbol{arepsilon}_i^{m_c}}$$

Ou \mathcal{E}_i est le volume relatif V_i/V_c : $\mathcal{E}_i = V_i/V_c$, et il satisfait la condition $1 < \mathcal{E}_i < \mathcal{E}$

Procédant de la même manière dans le cas de la détente on obtient :

$$P_{d_i} = P_z. \left(rac{V_z}{V_i}
ight)^{m_d} = P_z. \left(rac{
ho_{dp}}{arepsilon}
ight)^{m_d}$$

On fait un tableau à trois colonnes dans lequel sont présentées les valeurs calculées pour $p_{c,i}$ et $p_{d,i}$ en fonction de E_i . Il faut tenir compte dans la colonne de $p_{d,i}$ de ce tableau d'une condition supplémentaire $E_i \ge \rho_{dp}$ (pour le moteur à allumage commandé cette condition n'est pas nécessaire).

Par exemple:

On suppose qu'on fait le calcul d'un moteur diesel à un rapport volumètrique E = 10; pendant le calcul thermodynamique du cycle le taux de détente préalable obtenu est $\rho_{dp} = 1,25$.

Application moteur à allumage commandé – admission naturelle MAC – ANDonnées MAC – AN

Rapport volumétrique : $\varepsilon = 10$.

Pression du mélange frais à la fin de compression : $p_c = 1,92$ MPa.

Pression des gaz brulés à la fin de combustion : $P_z = 7,1$ MPa.

Le taux de détente préalable : $\rho_{dp} = 1$.

L'indice polytropique pendant la compression $m_c = 1,32$.

L'indice polytropique pendant la détente : $m_d = 1,30$.

εί	P _{c,i}	P _{d,i}	εί	P _{c,i}	P _{d,i}
10	0,092=p _a	0,356=p _b	2,0	0,770	2,88
9	0,106	0,408	1,9	0,824	3,08
8	0,124	0,476	1,8	0,885	3,31
7	0,147	0,566	1,7	0,954	3,56
6	0,181	0,692	1,6	1,03	3,86
5	0,230	0,877	1,5	1,13	4,19
4,5	0,264	1,01	1,4	1,23	4,59
4	0,308	1,17	1,3	1,36	5,05
3,5	0,368	1,39	1,25	1,43	5,31
3	0,451	1,70	1,2	1,51	5,60
2,8	0,494	1,86	1,15	1,60	5,92
2,6	0,545	2,05	1,1	1,69	6,28
2,4	0,605	2,28	1,05	1,802	6,67
2,2	0,679	2,55	1	1,92=p _c	7,1=p _z
2,1	0,722	2,71			

Tableau V.18: Tableau des pressions, en MPa : MAC – AN

Application moteur diesel suralimenté MD – TS:

Donnès MD-TS:

Rapport volumétrique : $\varepsilon = 13,55$.

Pression du mélange frais à la fin de compression : $p_c = 7,405$ MPa.

Pression des gaz brulés à la fin de combustion : $p_z = 10,37$ MPa.

Le taux de détente préalable : $\rho_{dp} = 1,482$.

L'indice polytropique pendant la compression : $m_c = 1,36$.

L'indice polytropique pendant la détente : $m_d = 1,24$.

Tableau des pressions, en MPa : MD − TS :

ε _i	Pc,i	P _{d,i}	ε _i	P _{c,i}	P _{d,i}
13,55	0,214=p _a	0,667=p _b	4	1,124	3,03
13	0,226	0,702	3,5	1,348	3,57
12	0,252	0,775	2,8	1,662	4,32
11	0,284	0,863	2,6	1,826	4,71
10	0,323	0,972	2,4	2,019	5,16
9	0,373	1,11	2,2	2,251	5,70
8	0,438	1,28	2,1	2,534	6,35
7	0,525	1,51	2,0	2,700	6,73
6	0,648	1,83	2,8	2,885	7,15
5	0,830	2,30	1,9	3,093	7,62
4,5	0,958	2,62	1,8	3,329	8,15

εί	P _{c,i}	$P_{d,i}$	εί	P _{c,i}	P _{d,i}
1,7	3,599	8,75	1,25	5,467	10,37=p _z
1,6	3,908	9,43	1,2	5,779	10,37=p _z
1,5	4,266	10,22	1,15	6,120	10,37=p _z
1,482=ρ _{dp}	4,337	10,37=p _z	1,1	6,51	10,37=p _z
1,4	4,686	10,37=p _z	1,05	6,93	10,37=p _z
1,3	5,183	10,37=p _z	1	7,405=p _c	10,37=p _z

Le calcul des grandeurs caractéristiques du cycle de référence :

Le travail mécanique indicatif du cycle de référence :

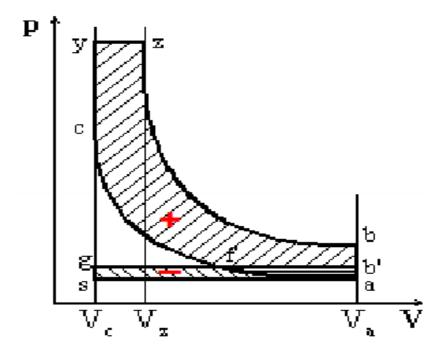


Figure 13 : Le travail mécanique indicatif du cycle de référence .

Le travail mécanique indicatif est représenté par la surface positive du diagramme de pression P – V :

$$L_i' = A_{acyzba} - A_{afb'a}$$

La surface $A_{afb'a}$ est considérée comme une fraction $\phi_p=0,2\dots 0,4$ de la surface du diagramme de pompage A_{abgsa} .

Ainsi la relation de travail mécanique indicative devient :

$$\vec{L_i} = \left[p_z . (V_z - V_c) + \frac{P_z . V_z - P_b . V_a}{m_d - 1} \right] - \varphi_p . V_s . (P_g - P_a)$$

Ou:

$$\dot{L_i} = p_c.V_C \{\lambda_p.\left(\rho_{dp} - 1\right) + \frac{\lambda_p.\rho_{dp}}{m_d - 1} \left[1 - \left[\frac{\rho_{dp}}{\varepsilon}\right]^{m_d - 1}\right] - \frac{1}{m_c - 1} \left(1 - \frac{1}{\varepsilon^{m_c - 1}}\right)\} - \varphi_p.V_s.\left(p_g - p_a\right)$$

Ce travaille mécanique ne peut pas être calculé parce que les dimensions fondamentales du moteur – l'alésage Dne sont pas connues

La pression moyenne indicative du cycle de référence :

La pression moyenne indicative du cycle de référence est :

$$p_{i}' = \frac{L_{i}'}{V_{s}}$$

Donc:

$$p_{i} = \frac{p_{a} \cdot \varepsilon^{m_{c}}}{\varepsilon - 1} \left\{ \lambda_{p} \cdot \left(\rho_{dp} - 1 \right) + \frac{\lambda_{p} \cdot \rho_{dp}}{m_{d} - 1} \left[1 - \left(\frac{\rho_{dp}}{\varepsilon} \right)^{m_{d} - 1} \right] - \frac{1}{m_{c} - 1} \left(1 - \frac{1}{\varepsilon^{m_{c} - 1}} \right) \right\} - \varphi_{p} \cdot \left(p_{g} - p_{a} \right)$$

Le rendement indicatif du cycle de référence :

Le rendement indicatif du cycle de référence η'_i:

$$\eta_i^{'} = \frac{L_i^{'}}{PCI}$$

Ecrivant l'équation d'état pour la charge fraiche on obtient le volume engendré par le piston V_S:

$$V_s = \frac{N_O.R_M.T_O}{\eta_V.P_O}$$

Et puis:

$$\eta_{i}^{'} = R_{M} \cdot \frac{p_{i}^{'}}{p_{O}} \cdot \frac{1}{\eta_{V}} \cdot \frac{N_{O} \cdot T_{O}}{PCI}$$

Dans le cas des moteurs suralimenté au lieu des grandeurs d'état p_o et T_O s'introduisent les grandeurs p_s et T_S :

Application moteur à allumage commandé-admission naturelle MAC-AN

Données MAC-AN

Rapport volumètrique: $\varepsilon = 9.5$.

Température standard de la charge fraiche : $T_0 = 298 \text{ K}$.

Pression standard de la charge fraiche : $p_0 = 0,1$ MPa.

Pression des gaz brulés résiduels : $p_g = 0,11$ MPa.

Pression du mélange frais à la fin d'admission $p_a = 0,092$ MPa.

Coefficient de remplissage : $\eta_v = 0.82$.

Pression du mélange frais à la fin de compression $p_c = 1,72$ MPa.

Données MAC-AN:

Le pouvoir calorifique inférieure du carburant : PCI = 43529 KJ/Kg cb.

Le nombre de Kmol de charge fraiche : $N_0 = 0,4653$ Kmol/Kg cb.

Le taux de détente préalable : $g_{dp} = 1$.

Le rapport d'accroissement de la pression pendant la combustion : $\lambda_p = 4$.

L'indice polytropique pendant la compression : $m_d = 1,3$.

L'indice polytropique pendant la détente : $m_d = 1,3$.

Pression des gaz brulés à la fin de combustion : $p_z = 7.3$ MPa.

Valeurs choisies MAC-AN:

La fraction ϕ_p du diagramme de pompage :

$$\phi_p = 0.3. \ (\phi_p = 0.2.....0.4).$$

Pression movenne indicative p_i'MAC-AN:

$$\begin{split} p_{i}^{'} &= \frac{p_{c}}{\varepsilon - 1} \{ \lambda_{p}. (\rho_{dp} - 1) + \frac{\lambda_{p}. \rho_{dp}}{m_{d} - 1} \left[1 - \left(\frac{\rho_{dp}}{\varepsilon} \right)^{m_{d} - 1} \right] - \\ &- \frac{1}{m_{c} - 1}. \left(1 - \frac{1}{\varepsilon^{m_{c}} - 1} \right) \} - \varphi_{p}. (p_{g} - p_{a}) = \\ &= \frac{p_{c}}{\varepsilon - 1} \left\{ \frac{\lambda_{p}}{m_{d} - 1} \left[1 - \left(\frac{1}{\varepsilon} \right)^{m_{d} - 1} \right] - \frac{1}{m_{c} - 1}. \left(1 - \frac{1}{\varepsilon^{m_{c} - 1}} \right) \right\} - \varphi_{p}. (p_{g} - p_{a}) \end{split}$$

Pression moyenne indicative **p**_i'

MAC-AN

$$\begin{split} p_{i}^{'} &= \frac{p_{c}}{\varepsilon - 1} \left\{ \frac{\lambda_{p}}{m_{d} - 1} \left[1 - \left(\frac{1}{\varepsilon} \right)^{m_{d} - 1} \right] - \frac{1}{m_{c} - 1} \cdot \left(1 - \frac{1}{\varepsilon^{m_{c} - 1}} \right) \right\} - \\ &- \varphi_{p} \cdot \left(p_{g} - p_{a} \right) = \frac{1,72}{9,5 - 1} \cdot \left\{ \frac{4}{1,3 - 1} \cdot \left[1 - \left(\frac{1}{9,5} \right)^{1,3 - 1} \right] - \\ &- \frac{1}{1,3 - 1} \cdot \left(1 - \frac{1}{9,5^{1,3 - 1}} \right) \right\} - 0,3 \cdot \left(0,11 - 0,092 \right) = 0,987 MPa \end{split}$$

Rendement indicatif η_i ' MAC-AN:

$$\eta_{i} = R_{M} \cdot \frac{P_{i}}{p_{0}} \cdot \frac{1}{\eta_{V}} \cdot \frac{N_{0} \cdot T_{0}}{PCI} =$$

$$= 8,315 \cdot \frac{0,987}{0,1} \cdot \frac{1}{0,82} \cdot \frac{0,4653.298}{43529} = 0,315$$

Application moteur diesel suralimenté MD-TS

Donnèes MD-TS

Rapport volumètrique : $\varepsilon = 14,25$.

Température de suralimentation : $T_S = 324,5$ K.

Pression de suralimentation : $p_s = 0.232$ MPa.

Pression des gaz brulés résiduels : $p_g = 0,1856$ MPa.

Pression du mélange frais à la fin d'admission : $p_a = 0,211$ MPa.

Pression du mélange frais à la fin de compression : $p_c = 7,624$ MPa.

Pression des gaz brulés à la fin de combustion : $p_z = 12,2$ MPa.

Donnèes MD-TS:

Coefficient de remplissage : $\eta_V = 0.902$.

Le pouvoir calorifique inférieure du carburant :

$$PCI = 41855 \text{ KJ/Kg cb.}$$

Le nombre de Kmol de charge fraiche : $N_0 = 0,966 \text{ Kmol/Kg cb.}$

Le rapport d'accroissement de la pression pendant la combustion :

$$\lambda_{\rm p} = 1.6.$$

Le taux de détente préalable : $g_{dp} = 1,35$.

l'indice polytropique pendant la compression : $m_c = 1,35$.

L'indice polytropique pendant la détente : $m_d = 1,25$.

Valeurs choisies MD-TS:

La fraction ϕ_p du diagramme de pompage : $\phi_p = 0.2(\phi_p = 0.2...0.4)$.

Pression moyenne indicative p_i'

MD-TS

$$\begin{split} p_{i}^{'} &= \frac{p_{c}}{\varepsilon - 1}.\{\lambda_{p}.(\rho_{dp} - 1) + \frac{\lambda_{p}.\rho_{dp}}{m_{d} - 1}.\left[1 - \left(\frac{\rho_{dp}}{\varepsilon}\right)^{m_{d} - 1}\right] - \\ &- \frac{1}{m_{c} - 1}\left(1 - \frac{1}{\varepsilon^{m_{c} - 1}}\right)\} - \varphi_{p}.(p_{g} - p_{a}) = \\ &= \frac{7.624}{14,25 - 1}\left\{\frac{1.6}{1,25 - 1}.\left[1 - \left(\frac{1}{14,25}\right)^{1.25 - 1}\right] - \frac{1}{1,35 - 1}.\left(1 - \frac{1}{14,25^{1.35 - 1}}\right)\right\} - \\ &- 0, 2.(0,1856 - 0,211) = 1,561MPa \end{split}$$

Rendement indicatif η_i 'MD-TS:

$$\eta_i^{'} = R_M \cdot \frac{P_i^s}{p_s} \cdot \frac{1}{\eta_V} \cdot \frac{N_0 \cdot T_S}{PCI} =$$

$$= 8,315.\frac{1,561}{0,232}.\frac{1}{0,902}.\frac{0,966.324,5}{41855} = 0,464$$

Le traçage du diagramme indicatif du moteur :

Le diagramme de du cycle de référence s'arrondit considérant :

la combustion se déroule en temps et elle s'étend sur les évolutions : isochore c-yet isobare y-z. les soupapes s'ouvrent avec avance et se ferment avec retardement par rapport aux points morts voisins.

Arrondissement du diagramme du cycle de référence du moteur diesel rapide à admission naturelle, pour obtenir le diagramme indicatif du moteur

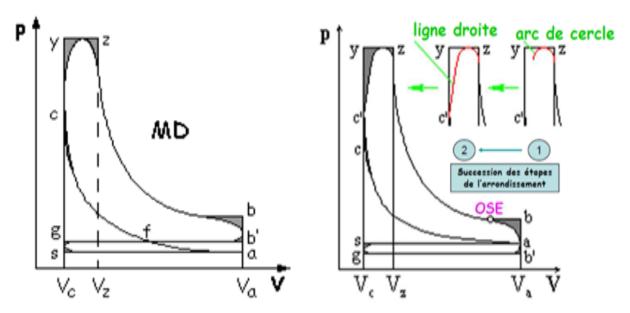


Figure 14 : Arrondissement du diagramme du cycle de référence du moteur diesel rapide à admission naturelle

Arrondissement du diagramme du cycle de référence

$$cc' = (35 ...50\%).cy$$

Pour l'établir le moment OSE on fait une construction auxiliaire à la partie supérieure ou inférieure du diagramme indicatif (figure 15).

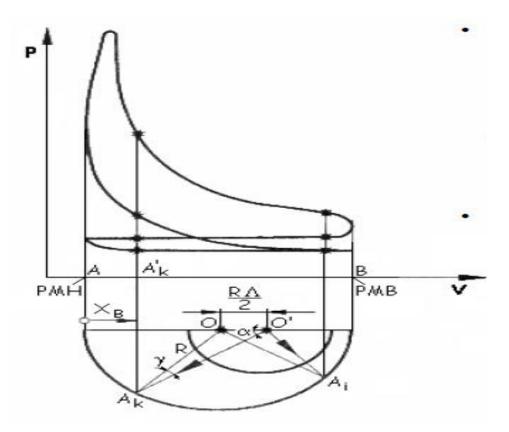


Figure 15 : construction auxiliaire à la partie supérieure ou inférieure du diagramme indicatif

a droite de se point O, avec le centre en O' situé à la distance OO' = $R^{/2}$ = $AB^{/4}$ on d'écrit un demi – cercle de rayon arbitraire sera devisé en 18 parties égales (de 10° en 10°).

on fait la jonction du centre O' avec les points ainsi déterminés sur le demi-cercle de rayon arbitraire de centre O' et on prolonge les segments ainsi déterminés jusqu'à l'intersection avec le demi-cercle de centre 0 (les points $A_0, A_1, ..., A_K$).

Dès les points A_0 , A_1 , ..., A_K ainsi déterminés des verticales s'élèvent jusqu'à l'intersection avec le diagramme indiqué.

Elles correspondent à différents angles de rotation du vilebrequin (sur l'admission, compression combustion et détente, échappement).

Les projections des points A_K l'abscisse représentent la position du piston correspondante à l'angle α - X_B .

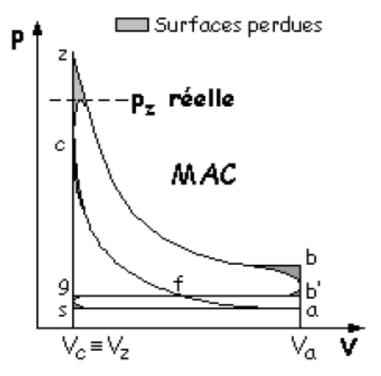


Figure 16: surfaces perdues.

Dans le cas du moteur à allumage commandé la valeur maximum de la pression réelle $p_{r\text{-rèelle}}$ est limitée :

$$p_{r-r\`{e}elle} = (0,75 \dots 0,85).p_z.$$

Application moteur à allumage commandé – admission naturelle MAC-AN

Donnès MAC-AN:

Pression des gaz brulés à la fin de combustion : $p_z = 7.3$ MPa.

Pression maximum de combustion rèelle :

$$P_{z-r\`{e}elle} = 0.8.p_z (P_{z-r\`{e}elle} = (0.75 \dots 0.85).p_z)$$

Pression maximum de combustion rèelle Pz-rèelle MAC-AN

$$P_{z\text{-r\`eelle}} = (0.75 \dots 0.85).p_z = 0.8. p_z = 0.8. 7.3 = 5.84 \text{ MPa}$$

Le travail mécanique indicatif du cycle réel Li est inférieur à celui du cycle de référence Li'.

On obtient le coefficient perfection du diagramme η_p :

$$oldsymbol{\eta}_p = rac{L_i}{L_i}$$

Les valeurs du coefficient de perfection du diagramme η_p se situentdans une fourchette de 0,92 à 0,97.

Le calcul des grandeurs caractéristiques du cycl réel :

Grandeurs caractéristiques indicatives :

La pression moyenne indicative :

la pression moyenne indicative :

$$p_i = \eta_p \cdot p_i$$

Le type de moteur			p i [MPa]	
MAC	Combustible liquide		0,751,55 a)	
MAC	Combustible gazeux		0,450,65	
MD	Admission naturelle	Injection directe	0,751,10	
	Aumission naturelle	Injection indirecte	0,701,00	
	Suralimenté		0,954,20 ы	

Tableau V.19: valeurs recommandées pour la pression moyenne indicative p_i

- a) −MAC suralimenté, p_i≤ 2,0 MPa.
- b) –MD haut suralimenté, $p_i = 2.3 \dots 4.2 \text{ MPa}$.

Le rendement thermique indicatif:

Le rendement thermique indicatif:

$$egin{aligned} oldsymbol{\eta}_i = rac{L_i}{PCI} = rac{L_i}{L_i}.rac{L_i}{PCI} = oldsymbol{\eta}_p.oldsymbol{\eta}_i^T \end{aligned}$$

Le type de moteur		ηί	
MAC		0,28 0,34	
MD	Semi-rapide	0,41 0,56	
MO	Rapide	0,37 0,48	

Tableau V.20: Valeurs recommandées pour le rendement thermique indiqué

La consommation spécifique indicative de carburant :

La consommation spécifique indicative de carburant c_i :

$$c_i = \frac{3, 6.10^6}{\eta_i.PCI}$$

Application moteur à allumage commandé-admission naturelle MAC-AN:

Donnès MAC-AN:

Le pouvoir calorifique inférieur du carburant :

$$PCI = 43529 \text{ KJ/Kg cb}$$

Pression moyenne indicative du cycle de référence :

$$P_{i}' = 1.09 \text{ MPa}.$$

Rendement indicatif du cycle de référence :

$$\eta_i' = 0.34$$
.

Valeurs choisie MAC-AN:

Le coefficient de perfection du diagramme p-V : $\eta_p = 0.95$ ($\eta_p = 0.92$... 0.97)Le rendement mécanique : $\eta_m = 0.9$ ($\eta_m = 0.7$... 0.9)

Pression moyenne indicative p_i MAC-AN:

$$P_i = \eta_p$$
. $p_i' = 0.95$. $1.09 = 1.03$ MPaValeurs recommandées : $p_i = 0.75$... 1.55 .

Rendement indicatif η_i MAC-AN:

$$\eta_i = \eta_p$$
. $\eta_i' = 0.95$. $0.34 = 0.32$ Valeurs recommandées : $\eta_i = 0.28$... 0.34 .

Consommation spécifique effective de carburant c_i MAC-AN:

$$c_i = \frac{3.6 \cdot 10^6}{n_i \cdot PCI} = \frac{3.6 \cdot 10^6}{0.32 \cdot 43529} = 259,13 \text{ g/KWh}$$

application moteur diesel suralimenté MD-TS:

Données MD-TS:

Le pouvoir calorifique inférieure du carburant : PCI = 41855 KJ/Kg cb.

Pression moyenne indicative du cycle de référence P_i' = 1,57 MPa.

Rendement indicatif du cycle de référence : η_i ' = 0,3832.

Valeurs choisies MD-TS:

Le coefficient de perfection du diagramme p-V : $\eta_p = 0.95$ ($\eta_p = 0.92$... 0.97).

Le rendement mécanique : $\eta_m = 0.9$ ($\eta_m = 0.85 \dots 0.95$).

Pression moyenne indicative p_i MD-TS:

Valeurs recommandées : $p_i = 0.95 \dots 4.20$.

Rendement indicatif $\eta_i MD$ -TS:

$$\eta_i = \eta_p$$
. $\eta_i' = 0.95$. $0.3832 = 0.364$

Valeurs recommandées : $\eta_i = 0.37 \dots 0.48$.

Consommation spécifique effective de carburant c_i MD-TS:

$$c_i = \frac{3.6 \cdot 10^6}{\eta_i \cdot PCI} = \frac{3.6 \cdot 10^6}{0.364 \cdot 41855} = 236.3 \text{ g/kWh}$$

Grandeurs caractéristiques effectives :

Une partie de travaille mécanique indicatif est consommé pour vaincre les résistances propres du moteur (les pertes propres).

Ces pertes sont appréciées par le rendement mécanique η_m (valeurs dans le tableau suivant):

Le type de moteur		n _m	
MAC		0,70 0,90 *	
WD	Admission naturelle	0,75 0,85	
	Suralimenté	0,85 0,95	

Tableau V.21: Valeurs du rendement mécanique

*on choisit les grandes valeurs pour moteurs à $n_p = 2500 \dots 4500 \text{ tr/min}$.

La pression moyenne effective :

La pression moyenne effective :

$$P_e = \eta_m$$
. p_i

Le type de moteur			p _e [MPa]
	Combustible liquide		0,70 1,40 a)
MAC	Combustible gazeux		0,40 0,70
	Admission naturelle	Injection directe	0,65 0,90
WD		Injection indirecte	0,60 0,80
	Suralimenté	1	0,80 3,50 b)

Tableau V.22: Valeurs recommandées pour la pression moyenne effective p_i

- a) MAC suralimenté, p_e≤ 1,8 MPa.
- b) les valeurs élevées, $p_e = 2.0 \dots 3.5$ MPa, s'obtient pour la haut suralimentation.

Le rendement thermique effectif:

Le rendement thermique effectif:

$$\mathfrak{y}_e=\mathfrak{y}_m.\ \mathfrak{y}_i$$

Le type de moteur		n _e	
MAC		0,25 0,32	
MD	Semi-rapide	0,35 0,48	
MO	Rapide	0,32 0,41	

Tableau V.23: Valeurs recommandées pour le rendement thermique effectif n_e

La consommation spécifique effective de carburant :

La consommation spécifique effectif de carburant c_e:

$$c_e = \frac{3.6.10^6}{\eta_e .PCI}$$

Le type de moteur		c _e [g/kWh]	
MAC		270 330	
MD	Semi-rapide	170 240	
MD	Rapide	200 270	

Tableau V.24: Valeurs recommandées pour la consommation spécifique effective de carburant c_e

Application moteur à allumage commandé – admission naturelle

MAC-AN:

Donnès MAC-AN:

Le pouvoir calorifique inférieure du carburant :

PCI = 43529 KJ/Kg cb.

Pression moyenne indicative du cycle de référence :

 $P_i = 0.97 \text{ MPa}.$

Rendement indicatif du cycle de référence :

 $\eta_i = 0.357$.

Consommation spécifique effective de carburant :

 $C_i = 246,1 \text{ g/kWh}.$

Valeurs choisies MAC-AN:

Le rendement mécanique :

$$\Pi_{\rm m} = 0.8 \ (\Pi_{\rm m} = 0.7 \ \dots \ 0.9)$$

Pression moyenne effective p_eMAC-AN:

$$P_e = \prod_m . p_i = 0.8. \ 0.97 = 0.776 \ MPa.$$

Valeurs recommandèes : $p_e = 0.70 \dots 1.40$.

Rendement effectif Π_e MAC-AN:

$$\Pi_e = \Pi_m$$
. $\Pi_i = 0.8$. $0.357 = 0.269$.

Valeurs recommandèes : $\eta_i = 0.25 \dots 0.32$.

Consommation spécifique effective de carburant c_iMAC-AN :

$$C_e = \frac{3.6 \cdot 10^6}{\eta_e \cdot PCI} = \frac{3.6 \cdot 10^6}{0.269 \cdot 43529} = 307.4 \text{ g/kWh}$$

Valeurs recommandèes : $c_e = 270 \dots 330$.

Application moteur diesel suralimenté MD-TS:

Donnès MD-TS:

Le pouvoir calorifique inférieure du carburant :

PCI = 41855 KJ/Kg cb.

Pression moyenne indicative du cycle de référence :

$$P_i = 1,509 \text{ MPa}.$$

Rendement indicatif du cycle de référence : $\eta_i = 0.39$.

Consommation spécifique effective de carburant :

$$C_i = 220,56 \text{ g/kWh}.$$

Valeurs choisies MD-TS:

Le rendement mécanique :

$$\eta_{\rm m} = 0.85 (\eta_{\rm i} = 0.85 \dots 0.95)$$

pression moyenne effective pe MD-TS:

$$p_e = \eta_m$$
. $P_i = 0.85$. $1.509 = 1.404$ MPa.

Valeurs recommandèes : $p_e = 0.80 \dots 3.50$.

Rendement effectif η_e MD-TS:

$$\eta_e = \eta_m$$
. $\eta_i = 0.85$. $0.39 = 0.363$

Valeurs recommandèes : $\eta_i = 0.32 \dots 0.41$.

Consommation spécifique effective de carburant c_i MD-TS:

$$C_e = \frac{3.6 \cdot 10^6}{\eta_e \cdot PCI} = \frac{3.6 \cdot 10^6}{0.363 \cdot 41855} = 236,97 \text{ g/kWh}$$

Valeurs recommandèes : $C_e = 200 \dots 270$.

Le calcul des dimensions fondamentales du moteur

Par le thème de projet on sait :

La puissance effective Pe, en kW au régime nominal.

La vitesse de rotation n, en tr/min au régime nominal.

Le nombre de cylindres i.

Le type cycle thermodynamique (quatre temps T = 4).

De rotation :
$$P_e = \frac{P_e N_s .i.n}{30.\tau}$$

On obtient :
$$V_s = \frac{30.\tau.P_e}{P_e.i.n}$$

Mais:
$$V_s = \frac{\pi . D^2}{4} . S. 10^{-6}$$

Choisissant le rapport constructif $\Psi = S/D(valeurs dans le tableau suivant)$, on obtient l'alésage D :

$$D = 10^{2}.\sqrt[3]{\frac{120.\tau.P_{e}}{\pi.\psi.P_{e}.i.n}}$$

Et la course de piston S:

$$S = \Psi$$
. D

Le type de moteur		ψ= 5/ D	
MAC		0,60 1,30	
	Lent	1,70 3,85	
WD	Semi-rapide	1,00 1,50	
	Rapide	0,90 1,50	

Tableau V.25: Le rapport course/alésage Ψ

On arrondit les valeurs trouvées pour la course de piston Set l'alésage D.

Avec ces valeurs arrondis on détermine le volume engendré par le piston-la cylindré unitaire – V_S et on fait un nouveau calcul de la puissance (relation(E)).

Cette nouvelle puissance peut différer de telle précisée par le thème de projet tout au plus 3%.

Connaissant la course de piston S on peut déterminer la vitesse moyenne du piston, W_{P, m}:

$$W_{P, m} = \frac{s.n}{30} \cdot 10^{-3}$$

Valeurs recommandées de la vitesse moyenne du piston W_{p, m}:

Voitures: $W_{P, m} = 12 ... 17 \text{ m/s}.$

Camions et tracteurs : $W_{P, m} = 10 \dots 13 \text{ m/s}.$

Locomotives: $W_{P, m} = 9 \dots 11, 5 \text{ m/s}.$

Application moteur à allumage commandé – admission naturelle

MAC - AN:

Donnèes MAC – AN:

Destination du moteur: Voiture.

Puissance effective: $P_e = 77 \text{ Kw}$.

Vitesse de rotation : n = 5500 tr/min.

Type admission: admission naturelle.

Nombre de cylindre et leur disposition : 4L (quatre en ligne).

Type du cycle thermodynamique : T = 4 (quatre temps).

Pression moyenne effective : $p_e = 0.929$ MPa.

Valeurs choisies MAC – AN:

↓ Le rapport constructif alésage/course S/D :

$$\Psi = S/D = 0.9 \ (\Psi = 0.6 \dots 1.3).$$

Alèsage D MAC – AN

$$D = 10^2. \sqrt[3]{\frac{120.\tau.P_e}{\pi.\psi.P_e.i.n}} =$$

$$=100.\sqrt[3]{\frac{120.4.77}{\pi.0,9.0,929.4.5500}}=86,16mm$$

Course de piston S MAC – AN

 $S = \Psi$. D = 86, 16. 0, 9 = 77, 54 mm.

On choisit:

L'alèsage D = 86 mm. Course de piston S = 78 mm.

Vitesse moyenne du piston $W_{P, m}MAC - AN$:

$$W_{P, m} = \frac{s.n}{30} \cdot 10^{-3} = \frac{78.5500}{30.1000} = 14, 22 \text{ m/s}.$$

Valeurs recommandées: W_{P, m} = 12 ... 17 m/s.

Application moteur diesel suralimenté MD -TS:

Donnès MD - TS:

Destination du moteur: Voitures.

Puissance effective: $P_e = 85 \text{ Kw}$.

Vitesse de rotation : n = 4800 tr/min.

Type admission: suralimenté.

Nombre de cylindre et leur disposition : 6L (six en ligne).

Type du cycle thermodynamique : T = 4 (quatre temps).

Pression moyenne effective : $p_e = 0.76$ MPa.

Valeurs choisie MD – TS:

Le rapport constructif alésage/course S/D:

$$\Psi = S/D = 1.3 \ (\Psi = 0.9 \dots 1.5).$$

Alèsage D MD − TS:

$$D = 10^{2}.\sqrt[3]{\frac{120.\tau.P_{e}}{\pi.\psi.P_{e}.i.n}} =$$

$$= 100.\sqrt[3]{\frac{120.4.85}{\pi.1,3.0,76.6.4800}} =$$

$$= 75,688mm$$

Course de piston S MD – TS:

 $S = \Psi$. D = 75,688. 1, 3 = 97,589 mm.

On choisit:

L'alésage D = 76 mm. Course de piston S = 98 mm.

Vitesse moyenne du piston $W_{P,\,m}\,MD-TS$:

$$W_{p, m} = \frac{s.n}{30}$$
. $10^{-3} = \frac{98.4800}{30.1000} = 15, 68 \text{ m/s}$.

Valeurs recommandèes: $W_{P, m} = 12 \dots 17 \text{ m/s}.$

Chapitre VI: Etude de la suralimentation

Une augmentation de la puissance du moteur à une même vitesse de rotation est possible en favorisant le taux de remplissage en air des cylindres, par divers procédés.

- Amélioration du remplissage au temps "aspiration" :
- multiplication du nombre des soupapes (3 ou 4 par cylindre, dont 2 d'admission),
- montage d'une distribution "variable",
- études et modifications des conduits d'admission d'air afin d'obtenir une alimentation par "oscillations" ou par "résonance";
 - Précompression de l'air ou "suralimentation" : elle consiste à introduire de l'air dans les cylindres à une pression supérieure à la pression atmosphérique.

Ce principe connaît actuellement un engouement extraordinaire.

1. Compresseurs de suralimentation

Trois types sont particulièrement utilisés et tendent vers un même but malgré des conceptions différentes :

- Appareils du type volumétrique entraînés mécaniquement,
- Appareils du type centrifuge qui comportent une turbine entraînée par les gaz d'échappement et accouplée directement à un compresseur (turbocompresseur),
- Appareils à "ondes de pression" (différence de pression entre l'admission et l'échappement appelé également "échangeur de pression").

4.1.1. Compresseurs volumétriques

Ces appareils entraînés par le moteur, permettent l'obtention d'une pression dès le début de l'accélération du moteur (couple important à bas régime), mais la puissance absorbée à régime élevé est importante, par rapport à un débit d'air limité.

Compresseurs à vis

Deux rotors à vis, entraînés par le moteur, tournent en sens inverse, à l'intérieur d'un boîtier où ils obligent l'air à circuler en se comprimant côté sorti.

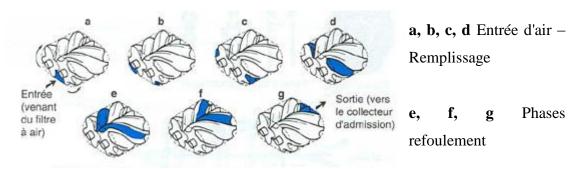
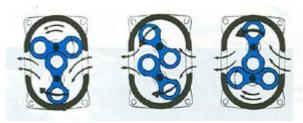



Figure.VI.1. Compresseurs à vis

Compresseurs à lobes

Fonctionnement analogue à celui du système ci-dessus, à l'aide de deux lobes tournant en sens inverse.

Figure.VI.2. Compresseurs à lobes

Compresseurs à pistons rotatifs

Le rotor intérieur, entraîné par courroie, tourne de façon excentrée dans le rotor extérieur.

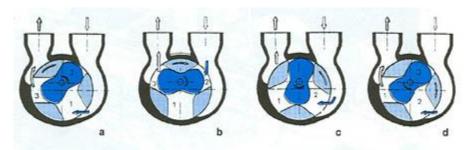


Figure.VI.3. Compresseurs à pistons rotatifs (Système Wankel)

Position	Chambres			
	1	2	3	
a	Aspiration	Début remplissage	Début détente	
b	Remplie	Remplissage	Détente	
c	Compression	Fin remplissage	Fin détente	
d	Début détente	Aspiration	Début remplissage	

1.2. Compresseurs centrifuges (turbocompresseurs)

L'intérêt de cet appareil réside dans son encombrement réduit et, par suite, son poids plus faible. Cependant, le principal avantage se situe au niveau de l'utilisation de l'énergie cinétique des gaz d'échappement pour son entraînement.

De ce fait, la suralimentation du moteur est réalisée sans aucun prélèvement de puissance.

Constitution

Le turbocompresseur est un appareil centrifuge dont le rotor (équilibré de façon rigoureuse en usine) tourne à grande vitesse (80 000 à 150 000 tr/min), celle-ci étant proportionnelle à l'énergie des gaz de combustion (pour un turbocompresseur non régulé), et qui comprend des parties distinctes :

- **Le carter central** ou support, comprenant les paliers, le rotor complet équilibré, le système de graissage et de refroidissement.
- L'étage turbine où les gaz de combustion en provenance des cylindres du moteur sont

canalisés vers une roue axiale. Ces gaz se détendent et mettent en rotation la roue de turbine, avant d'être rejetés vers la tuyauterie d'échappement. Cette partie du turbocompresseur est soumise à des températures élevées (> à 650°C), ce qui nécessite l'emploi de matériaux spéciaux (fonte GS pour le carter et acier allié au nickel ou maintenant céramique pour la turbine) et d'un refroidissement efficace circulation d'huile par et quelque fois d'eau. - L'étage compresseur : l'air pénètre axialement dans le compresseur, est mis en vitesse par la roue de compresseur, puis dévié de 90° vers le diffuseur qui transforme l'énergie cinétique acquise en pression d'air, dirigée vers le collecteur d'admission. Les températures de cet étage étant beaucoup plus faibles que le côté turbine (80°C à 150°C), les pièces (roue, carter) sont en alliage d'aluminium.

- Ensemble tournant : l'ensemble turbine-arbre est dénommé "rotor". L'ensemble rotor-roue de compresseur constitue "l'ensemble tournant" et demande un équilibrage parfait. Cet ensemble tourne sur film d'huile sans frottement, les coussinets lisses montés flottants dans le carter central servent de guides.

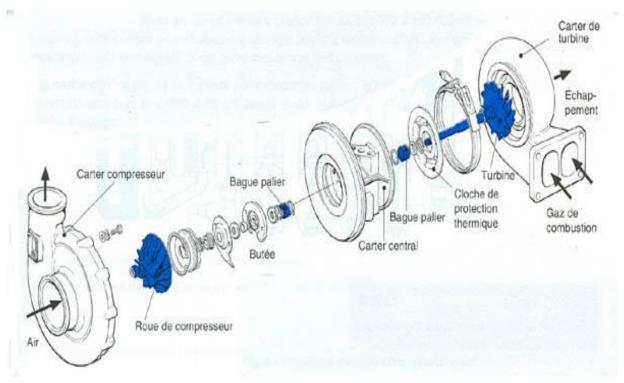


Figure.VI.4. Vue éclatée d'un turbocompresseur HOLSET

1.3 Suralimentation par ondes de pression (système Comprex)

Le procédé "comprex"utilise l'onde de pression générée par un bref contact entre les gaz d'échappement et l'air d'admission (différente de pression) dans les cellules du rotor. Ce système procure un temps de réponse à bas régime très inférieur à un turbocompresseur classique, tout en gardant des performances comparables à hauts régimes.

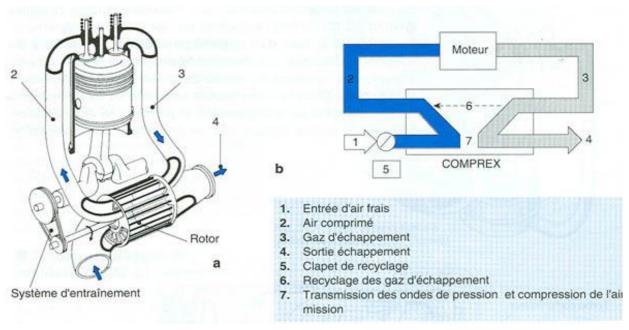


Figure VI.5 Suralimentation par ondes de pression

2. Circuit de suralimentation

Les variantes sont nombreuses, allant du circuit simple à un ou deux turbocompresseurs, quelquefois refroidis par eau, avec échangeur de température (air/air ou air/eau), muni ou non d'une régulation de la pression maximum d'admission (haute pression > à 3 bars).

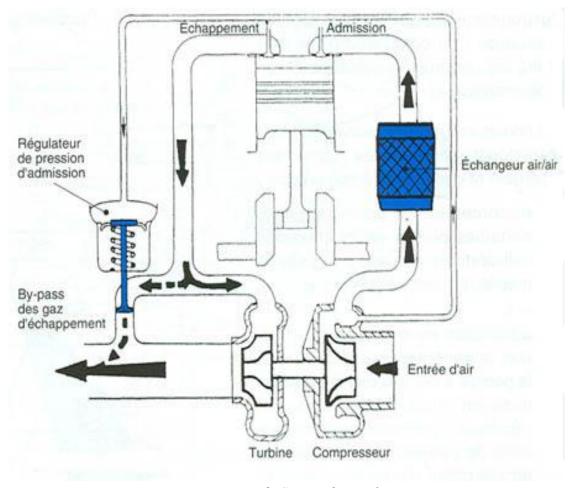


Figure.VI.6. Circuit de suralimentation

Biblio	graphie		
1	La mécanique automobile: Les Organes de transmission et d'utilisation	M.Menardon	Chotard.Associés
2	Turbo-machines hydrauliques et thermiques:T.4: Mécanique des fluides compressibles	M.Sedille	Masson
3	Mécaniques des moteurs alternatifs	B.Swoboda	Technip
4	Manuel du mécanicien et du thermicien	R.Brun	Technip
	Science et technique du moteur diesel industriel et de		
5	transport:T.1	R.Brun	Technip
	Science et technique du moteur diesel industriel et de		
6	transport:T.2	R.Brun	Technip
_	Science et technique du moteur diesel industriel et de	D D	
7	transport:T.3	R.Brun	Technip
0	Téchnologie de l'automobile, le moteur:T.1: 4 Temps, 2	C M-:111	E 41'
8	Temps, Diesel	G.Maillard	Educalivre
9 (Technologie de l'automobile: Le moteur:T.2: onctionnement, Carburation, Allumage	G.Maillard	Educalivre
	La post-combustion dans les turboréacteurs: Etude théorique	O.Mainaiu	Educativie
10	et expérimentale	R.Sansal	O.P.U
11	Machines hydrauliques et compresseurs	M.Taibi	O.P.U
	<u> </u>		
12	Transfert de chaleur lors de changement de phase	Dorchenko	O.P.U
13	La technique de la réparation automobile:T.1: Le moteur:	M.Desbois	Foucher
13	Mise au point et contrôle. Es La technique de la réparation automobile: T.2: Les organes	WI.Desbois	rouchei
14	de transmission et d'utilisation	M.Desbois	Foucher
15	Moteurs alternatifs à combustion interne	P.Arquès	Masson
16	Inflammation. Combustion. Pollution.	P.Arquès	Masson
		•	
17	Mémento de technologie automobile	R. Bosch	R. Bosch
18	Moteur diésel: fonctionnement, entretien et réparation	Schulz	Mc Graw Hil
19 -	Exercices de mécaniques des fluides Tome 2:	M.A.Morel	Chihab
	Constructions graphiques, phénomènes transitoires.		1
20	Moteurs Diesels : Diagnostics Et Mises Au Point	Bernard Vieux	Foucher
21	Maintenance Automobile le savoir-faire	Hubert Mémeteau	Dunod
22	Transmission et freinage: notions de base Tome 3	Serge Picard	Delta press
	Résultas de l'étude analytique des processus de l'instalation		
23	ec limitation des transferts thermiques et régulation de la suralimentation	Benabbassi A	Entropie N°234 ,2001
24	Simulation mathématique sur ordinateur des performances du moteur à gaz, suralimenté	Khatchian A Benabbassi A	MADI 1995
25	Cours moteur www.fr.wikibooks.org		org
26	Les moteurs à combution interne introduction à la théorie	Benabbassi A	O.P.U
27	Machinesthermiques II : Projet calcul du cycle thermodynamique		M.G.POPA
28	Moteurs thermique	P.A.N.SOVANNA	