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Résumé

/Lefﬁ VA Zm L;
Ce mémoire de recherche vient-deprésenter le travail de projet de fin d’études %l&ste;? qui
a pour ambition d’améliorer la détection des objets en mouvement en utilisant les mixtures

de gaussiennes adaptatives.

La premiére partie est une examination générale des fondamentaux de vision par machine,

ainsi qu'une uamn détaillée des concepts des systemes de vidéosurveillance.
(=

Le role de cette partie est la mise au point sur les différents acteurs qui se trouvent
dans les systémes de vidéosurveillance reposants sur la détection automatique des objets en

mouvement, précisément : la soustraction du fond.

Les mixtures de gaussiennes adaptatives est une méthode communément utilisée pour
détecter les objets en mouvements. Cependant, la performance de cette méthode est suscept-

ible de dégrader face aux plusieurs déffs comme : la variation instantanée de luminosité, les

objets qui s’arrétent de bouger, U'ombre et les fonds dynamigues. )
2 S ,
Seflen Commeng G O%[}/J y opues
La seconde partie slappligue-#déerire 165 pratiques suivis pour réduire les inconvenants

des mixtures de gaussiennes par une modélisation plus fiable et adaptative. Tout en essayant

de répondre aux problématiques suivantes :

Comment améliorer les mixtures de gaussienne, tout en maintenant leurs corps
et sans Pajout de post-traitements 7
Beaucoup d’améliorations ont été déja proposées, pouvons-nous y arriver a

proposer une meilleure 7
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General Introduction

TYQ¥ e live in the era of the domination of computer vision on every aspect of our
L\ 2 lives, from fun use like taking pictures in holidays, to serious stuff like training
@9 e pilots in simulators using synthetic imagery.

When it comes to video surveillance, which is a very sensitive domain, computer vision
plays a very important role, either to offer personal assistance for security managers who can’t
stay focused on multiple scenes at the same time, or by affording fully automatic surveillance

systems that can detect accurately suspicious persons or objects.

In order to offer this accuracy of detection, researchers try always to improve change
detection and object detection methods, or even try to come up with new ones to conquer
deferent challenges in video surveillance.

From avﬁﬁt?of methods, we are meant to study the Adaptive Mixture of Gaussians
method. This method in particular, can detect changes in the monitored location, and can
adapt to these changes at the same time. It creates a model for the scene when it’s considered
empty from any object (called background modeling) and compares new footage with this

background model to find the new objects (called foreground detection). After that, it updates

the background model to slightly include ne?; cjﬁ ges. CLQ&J’; .
A G
-~

However, original MOG method has its downfalls. As consequence, the aim of this work

P N
is to find solutions and improvements to this method.

'Wcsiblj\

In this memair, we will follow a logic order to present how deferent domains are linked
together, we will walk progressively from computer vision (the field of study), then video
surveillance (the field of application), to a brief survey on deferent object detection and
tracking methods in video surveillance, where we will explain in details the original Gaussian
Mixture Model method. Finally, we will present our proposed improvements, in the form of
two deferent new methods (called Rx-GMM and Bx-GMM).

Our improved GMM methods had shown a deferent behavior than GMM’s, due to the
deferent concept we used to model the background. The tests we performed at the end
of this work will show in addition of the points we missed, the degree of improvement we

succeeded to make when handling deferent challenges in video surveillance scenes.



Chapter 1

Machine Vision
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1 Introduction

Vision has always been the main resource of information that humans, animals, and almost
every breathing species on earth has used to discover the exterior world. However there is
no single model for vision that is ideal for all circumstances[1], from sophisticated polarized
vision of the ant[2] and the locust Figure 1.1, to the special vision system of aquatic mammals,
like cetaceans, that functions like a charm both in air and water, keeping in mind that these
two media have very different optical features|3].

Figure 1.1: Polarized Vision of Locusts : (a) eyes of a locust, (b) polarization-sensitive
dorsal rim area (DRA) in the left compound eye of a locust, it gives the locust the ability to
get (c) a 3D perception of its position using the pattern of polarized light of the blue sky.[4]

Nowadays, The challenge that faces the modern vision science is not the lack of computing
power, nor the lack of inspirational systems, the challenge is how to give the machine the
appropriate physical components and the convenient logic that enables such a near-ideal

vision system for machines.

2 Human Vision

Human vision system is so far one of the greatest vision systems. It has some physical
limitations : we can see just a small portion of electromagnetic spectrum called “visible
light” [5], but it has a highly efficient receptor -the eye- that can highly adapt to the changes
in this visible spectrum Figure 1.2.
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Figure 1.2: Human Vision : (a) The electromagnetic spectrum, of which visible light
constitutes only a small portion. (nm 5 nanometers), (b) Sensitivities of rods and the three
cone types to the different wavelengths of the visible spectrum. (c¢) Human eye lenses.[6]

Though scientists has discoved almost the whole architecture of the human eye, yet no
one could explain the mysterious process in the human brain that gives us the perception of
what eyes receive. Like in Figure 1.3, regions with the same geometry and the same colors,
if attributed to deferent scenes, as a consequence they will have deferent meanings.

3 Machine Vision

3.1 Definition

Machine vision is the discipline of giving machines the ability to capture visual information
and to understand the context of the received data. Usually this begins by describing the
scene, which is captured in one or more images, with deferent types of receptors, and recon-
structing its properties, such as shape, illumination, and color distributions(8], to obtain a

near-to-reality interpretation.
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TARGET 1 TARGET 2
(@)

(b)

Figure 1.3: Human Perception : (a) Target 1 and Target 2 has the same color, and the same

dimensions, for human brain they represent similarity, in (b) They still the same, but for

human brain they have very deferent perception, now there is transparency, 3D environment,
objects overlapped and all other informations that was added by the brain [7].

(b)

Figure 1.4: Microsofl HoloLens : (a) A new commercial mixed reality experience, of the
real world and a virtual world combined using computer vision techniques of HoloLens, (b)
Microsoft’s new HoloLens, unveiled in January 21st, 2015[9)].

Computer Vision is an important and maturing engineering science. It underpins an
increasing variety of applications that require the acquisition, analysis, and interpretation of
visual information. It’s considered as a young discipline, and despite recent success, it is still
a relatively brittle technology[10].
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3.2

Machine Vision System

, (@ , (®) 5 (© . (@ ,

Figure 1.5: Computer Vision System : (a) Real scene. (b) Data resource : Image acquisition
or multimedia databases. (c) Image processing techniques can be executed on a verity of

processing devices. (¢) Decision making for humans and automates.

A Computer Vision systems usually includes[11] :

1.

Real Scene : The main resource of visual information for computer vision systems.
This includes any physical object, environment, or a movement that can be captured
or seen. However in some applications, databases are considered as a main resource of

information.

. Image Acquisition : A digital image is produced by one or several image sensors,

which, besides various types of light-sensitive cameras, include range sensors, tomo-
graphy devices, radar, ultra-sonic cameras, etc. All this sensors convert the received

signal to a digital representation by sampling and quantization.

Pre-processing : this includes noise reduction in order to assure that sensor’s noise
does nol falsify original information, and Scale-space representation to enhance image
structures at locally appropriate scales ( In case where images were captured with a
known distortion).

Feature Extraction : In which, image features at various levels of complexity are
extracted from the image data. From extracting interest points such as corners and
blobs, to more complex features like lines and shapes, and other zone related features

like texture, or motion.

Detection & Segmentation : The interpretation of the feature extractions results

gives the vision system information about object of interest, or regions to select. In
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same cases, this will be the end of the computer vision time line, but in others, this
step’s result would be used for high level processing techniques and algorithms.

6. High Level Processing : It includes Image matching and image recognition for clas-
sifying results based on a set of data, and Image synthesis for creating new views and
scenes based on multiple occurrences for the detected object[12].

7. Decision making : which could be the goal of the system in some cases like security
and military, or making autonomous actions for robots, or just matching information

in case of multimedia databases.

3.3 Digital image

Any visual content that was captured or created, stocked, treated and displayed by a digital
device, is considered as a digital image, adding a window of time gives us a digital video.

3.3.1 Image

Digital images are generally classified by the type of numeric representation of its data to

two types :

1. Victor digital image In which visual content is represented by geometrical objects
Figure 1.6. with multiple attributes like shape, color and position. These attributes

represent its spacial position in a known landmark, and its appearance.

2. Raster! digital image Visual data are represented by a matrix of n dimensions (gen-
erally n = 2), each cell of the matrix contains a unified color element (generally square
shaped) called “Pizel” (for Picture-element).

In addition of dimensions, All raster images have these characteristics :

e Dimensions : In case of dimension 7 = 2, the image has a width and a height, else
if n — 3, which is the case of 3D images, pixels are called “Vozels”? instead.

e Color Depth : the number of colors that one pixel can have, which must be a finite
number obtained by equation 1.1.

Color depth = 25 depth (1.1)

bit depth of images is usually one of these : 2 bits for black and white images, 8
bit for Grey scale images and 16, 24 up to 32 bit for almost real color images.

! Also called “Bitmaps”.
?For Volume and pixel combined.
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e Resolution : the relation between dimensions of an image (in Pixels), and its real
representation in real world { on digital display device or on printed paper) in
Inches. Digital image’s resolution is measured in PPP unit (Pixel Per Inch)

1 «7?xml version="1.0" encoding="UTF-8"
standalone="no"?>
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3.3.2 YVideo

Digital video is a set of bitmap images called frames, shown on a digital display with a
constant speed, it can be captured by a digital camera or created by a software, or both.
Digital videos have their own characteristics :

1. Resolution
Represents the width x height of the frames, which remains constant for all frames in
the video. Some of resolutions are represented by one number (the width), for example
a 1080p video means that the resolution is 1920 x 1080 pixel.
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2. Aspect ratio
Aspect ratio is the ratio of a frame’s width to its height. For example the aspect ration
of a video with a resolution of an 1920 x 1080p is obtained by equation 1.2.

width 1920 16
height 1080 9

Aspect ration = (1.2)

Digital videos have different resolutions but they must have one of these standard aspect
ratios Figure 1.7, so they can be displayed properly on a digital display device.

Widescreen SD video,
Video SD video HD video
image 4:3 16:9
1.33:1 ~1.78:1
Film Cinema film Cinema film
image 1.85:1 2.4:1

Figure 1.7: Vidco Aspect Ratio : some standard aspect ratios of videos, for SD videos, IID,
and film videos[13].

3. Frame rate
Frame rate of a video is the constant number of frames shown in a period of time, it’s
usually represented by the number of frames per second FPS. Human vision system can
process 10 to 12 separate images per second[14], this means that a video with a 10 FPS
does not appear smooth and cannot give us the illusion of continuous feed, this is why

videos frame rate is usually set to 24 FPS or more (from 30 to 120 FPS for usual cases).

4. Compression method
For example without compression, if we had a 5 min 720p video with frame rate of a
30 FPS, its size would be :

Size = nP x bitDepth x FPS % (bU X b) & 1, 1Gb (L.3)

According to the size equation 1.3, it would be impossible to store a 1 hour film in a
DVD, and it takes a large amount of bandwidth to be transfered. Streaming uncom-
pressed videos with the actual Internet speed would be impossible too !

Digital video compression techniques play an important role to enable video applica-
tions. Video compression relies on detecting redundant information and replacing it
with a more efficient representation. Video compression also takes into consideration
the human psycho-visual system by discarding information that is difficult or impossible

for humain eye to see. Almost all video compression techniques are therefore lossy.
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There are many different video compression techniques, most commonly used approaches

are :

(a) Color Difference Spaces : In this approach we convert the color space of the
original video from RGB to YUV, specifically the YCrCb format. Frames are
divided to 4:4 blocs, after, they can be compressed by down-sampling the resolution
of the chrominance Figure 1.8.

® © 00 o 9o 0 0
XX XX XX XX (XX X X
@ ©® o e ® ® o @
KKK KXXIXX
® &/ ® 0 0 @ O @
XX XKXIXKIXK| (XX XX
® © 060 o o 0|0
XX XX XXX X

(a) @ =Ysample (b)

X X =CrCbsamples

Figure 1.8: Color space compression : the 4:4 down-sampling method, (a) the original video
(b) the compressed video wherein there is only one chroma pair sample for every 2 x 2 grid
of pixels[15].

(b) MPEG : Picture coding types (I, P, B) This approach is the baseline al-
gorithm for MGPEG video Compressing algorithms. A video sequence is parti-
tioned into successive groups of pictures (GoPs).

The first picture in each GoP is coded using a JPEG-like algorithm, independently
of other pictures.

I : for Intra or I-picture, is a reference picture available for use in predicting neigh-
boring (non-intra) pictures.

P : for P-picture contains elements that are predicted from the most recent an-
chor frame. P-pictures are dependent to I-pictures which can have two or more
P-pictures.

B : for B-pictures, they are optional. Elements of a B-picture are typically Bip-
redicted by averaging motion-compensated clements trom the past reference pic-

ture and motion-compensated elements from the future reference picture.

There are lots of compression methods that can be used to compress videos data. Even
though, for every approach we find a standard decoder and a verity of coders, which
make it impossible for us to cite them all in this stat-of-the Art Chapter. in Figure 1.10
we find the chronology of the most used video coding standards.
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Figure 1.9: The three-level MPEG compression hierarchy :a simple encoder that emits a
fixed schedule of I-, B-, and P-pictures (a GoP structure with an I-picture interval of n=9,

and a reference P-picture interval of m=3)[13].

Chronology of international Video Coding Standards

- H2647MPEG-4AVC

- (2003-2006%)

H.262 / MPEG-2.

(1994795 - 1998+)
MPEG-T

o MPRE-AVmIaL
1990 20078)

1388 1330 .1952 1334 1936 1338 2000 2[1{12 2004

Figure 1.10: Chronology of International Video Coding Standards[16]

4 Application domains of machine vision

4.1 Computer Vision for Visual Effects

Modern blockbuster movies seamlessly introduce impossible characters and action into real-
world settings using digital visual effects. These effects are made possible by research from

the field of computer vision[17].
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Figure 1.11: Computer Vision for Visual Effects : (a) Captured real scene (b) The new
scene after adding visual effects, from Game of Throne TV Serie[18].

4.2 Human computer interaction

In order to make Human-Computer interaction more intuitive, machine vision is used to, at
least minimize, or replace the click button interaction, with gestures driven interaction which
is more natural way of interaction. One of the best examples is using the player’s gestures
in gaming using machine vision techniques like head tracking Figure 1.12, eyes and hands
tracling,.

©

Figure 1.12: Computer Vision In Human Computer Interaction : (a} PlayStation Camera

for the PS4 system, with dual wide angle lenses for enabling hands-free navigation of the

user interface. (b) Player’s natural head movement. (c) Head tracking was used to change
the camera view inside the game[19].
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4.3 Industry

The industry was one of the first domains that applied computer vision in a massive scale, in
order to help employees or replace them. Computer vision in industry is usually accompanied
with robotics, to automate industrial tasks Figure 1.13.

(b)

Figure 1.13: Amazon’s Kiva robots : (a) amazon’s robots used to handle and transport
products in amazon’s warehouses. They are equipped with camera on the bottom to detect
(b) white squares on the floor used to aide robots to find their way using computer vision[20].

4.4 Medical Imaging

Machine vision plays an essential role in the medical field, this includes computer-assisted
diagnosis, image segmentation Figure 1.14, and image-guided therapy, even image annotation
and image database retrieval. Integrating machine vision in medical imaging, by using new
imaging modalities and methodologies, facilitates the detection and diagnosis of abnormalities

in medical images.

Figure 1.14: Computer Vision In Medical Imaging : Brain image segmentation used to
classify Dementia[21].
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4.5 Military

Computer Vision has long been of interest to, and utilized by sophisticated armies around
the world, especially in detecting, targeting and tracking objects to maintain accuracy when
shooting. Target lock system in armed planes is the best example. Recent target lock system
based on the one on the plane’s was added to soldiers’ rifles to enable them to shoot long
distance targets without experience Figure 1.15.

(a)

Figure 1.15: Machine Vision Precision-Guided Firearm : (a) Machine vision enabled sniper

rifles made by Tracking Point Startup. (b) The technology allows a shooter to pinpoint a tar-

get, then use object-tracking technology, combined with a variety of variables (temperature,
distance, etc.), to determine the most effective place to fire [22].

5 Conclusion

This first c_ha.pter allowed us to discover the main themes and the essential ideas to re-
member in the context of machine vision, as well as the basics of the digital imagery and,
especially, digital videos.

Clearly, machine vision has a big impact on our daily lives. However, navigating through
machine vision recommends a good knowledge of multiple domains that compose its funda-
mentals, like Signal Processing, Artificial Intelligence, Geometry and Software Engineering.

For the next chapter, we will dive into digital video surveillance which is our domain of
application in this project.



Chapter 2

Video Surveillance

14
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1 Introduction

In our days, watching a camera hanging out from a wall or a roof top is something usual.
Because of the popularity of video surveillance, we can find it in banks, parking lots, museums,
universities, stadiums, big or small stores, and even in streets.

These cameras usually lead to security rooms, where we often see a matrix of monitors
showing cameras streaming, and two or three security agents keeping an eye on them.. This
is pretty much what most people think of video surveillance !

In this chapter, we will dive in the science behind video surveillance systems, its component
and how, and what’s for. In addition, we give an ethical summary about privacy and video

surveillance.

2 Definition

According to Collins Dictionary, video surveillance system is a system of monitoring activity
in an area or buildings using a television system, in which signals are transmitted from one
or more cameras to the receiver’s television (a limited set of monitors) by a media (cables or
telephone links) forming a closed circuit, for that it’s also called : Closed Circuit TeleVision
CCTV.

A video surveillance system (also short VSS) offers the possibility of visual surveillance
while the observer is not directly on site. Surveillance may be performed not only directly

but may also be stored, evaluated and repeated as often as necessary.

3 Chronology

Video surveillance wasn’t developed as a science as it is, instead, it had always a relation
with its domain of application. These are the big events that shaped video surveillance to its

shape that we know today|[23] :

e 1942: The first report of using surveillance cameras was for military purposes. Engineer
Walter Bruch, Figure 2.1, installed a closed-circuit television CCTV system for Siemens
in 1942 at the Test Stand V-1I rocket launch site in Peenemunde in Germany to safely

monitor any cause of malfunction or problems from the rocket launches.
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Figure 2.1: Walter Bruch 1908-1990 : The television pioneer Walter Bruch with a model
of his iconoscope camera, which was used in the the first live broadcast in 1936. Photo:
AEG-Telefunken in February 1978

e 1956 - 1960: was the period when video surveillance starts to be used for public surveil-
lance : The police in Frankfurt, Germany put into service the first photographic and
automatic red light-surveillance; in order to investigate violations of traffic regulations.
In addition to traffic control, the observation of rallies and public gatherings was the
second task delegated to these camera eyes.

They used it also to monitor crowds attracted to the arival of Lhe T'hai Hoyal Famnily
in 1960.

e In 1960 - 1970(+) : The video surveillance starts to roll out in United Kingdom in
London Transport train station, and some UK companies markets a video surveillance
system to retailers to catch shoplifters.

Figure 2.2: Closed circuit TV in Munich, 1973

After that, In United Stats, the NYPD installed cameras in the New York City Muni-

cipal Building near City Hall and Times Square.
A nice patent was granted for Marie Van Brittan Brown and her husband, Albert Brown,

for the first home security system utilizing television surveillance.

e 1990s : With the early 90s, When digital multiplexer units became affordable, it revo-

lutionized the surveillance industry by enabling recording on several cameras at once.
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Figure 2.3: First home security system uses video surveillance : with 4 peep holes and a
camera that slides up and down to look out each one. Anything picked up was displayed on
a monitor, and also featured a remote for unlocking the door.

Digital multiplex also added features like time-lapse and motion-only recording, which
saved a great deal of wasted videotape.

e 2000s - Nowaddays : video surveillance can be found in any domain from military to
public to private, and for a lot of applications from security and surveillance to more

privacy-friendly applications Figure 2.4 like counting people Figure.

Figure 2.4: Passenger Flow and Queue Measurement : A Video surveillance system in
London Gatwick Airport for counting passengers flow. (it counts near 10 million passengers
per annum).
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4 Video Surveillance System Components

4.1 Capture Hardware

Capturing the scene is the first thing any CCTV system must do. In order to capture a
scene, equipment must be chosen according to the nature of the scene and the domain of
application. Capturing big areas for example recommends cameras with wide lens instead of
multiple cameras, indoors video surveillance uses deferent type of cameras which sometimes
must be hidden Figure 2.5.

Figure 2.5: Video Surveillance Cameras : (a) CCTV ontdoor cameras for night use, (b) for
day use. (¢) Indoor CCTV hidden hardware

4.2 Transmission

Almost all video surveillance systems use cables to transmit images from cameras to work-
station to be displayed or stored. The most used ones arc the RG179 and RG59 Coax Cables
Figure 2.6 because of their low price and the necessity of long distance cables. However, recent
CCTYV systems use wireless network to afford more flexibility and online image transmission
for distant workstations, using IP-Protocol network.

®) ©

Figure 2.6: Transmission Media in Video Surveillance Systems : (a) Ultra Thin RG179
Coax Cable (b) RG59U plus Coax Cable (c) Recent video surveillance systems using IP
network for image transmission
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4.3 Visualization

Video surveillance systems needs specific hardware and software for visualizing what is cap-
tured by cameras, for the hardware it varies from simple monitors to highly specialized control
stations Figure 2.7, and for the software it’s all about the Human-Machine Interface that must
respect CCTV systems constraints, like giving higher importance for viewing scene and easy-

access buttons to save camera images or to zoom in and out etc.

Figure 2.7: Fully equipped monitoring room for a CCTV system.

In case of IP network based CCTYV, there is always possibility to show camera feed on
smart devices like smartphones and tablets Figure 2.8. this approach has been adopted to
lots of recent video surveillance systems called : Remote Mobile Surveillance Systems.

Figure 2.8: Remote Mobile Surveillance Systems : A cross-plateforme remote mobile video
surveillance concept.

4.4 Storage

For video surveillance systems it’s a necessity to store some of, and sometimes all of cameras’
stream in a database, this creates a huge problem of storage capacity especially when using a
video surveillance system for a long time and with multiple cameras. Because of that, CCTV
systems usually use what’s called DVR ( Digital Video Recorder Figure 2.9) to store videos.
By giving the user the possibility to save videos on HDDs, and the option to replace them
when they’re full, It provides a convenient way of storage to CCTV systems.
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Figure 2.9: Digital Video Recorder : Samsung’s DVR with HDD (SRD-1676D)

How much can a DVR save 7 to answer this question, lots of factors come in the way,

they are :

e Number of HDDs in the DVR

e Capacity of each HDD

e Resolution of cameras

e Number of cameras

e FPS : Number of frames per second considered to store
® Required length of video archive (days)

e Recording motion (Scheduled or non stop)

e Compression of videos

4.5 Analyses

TU snalyze video feed In video survelllance system, older systems used human based approach,
where a person sits in front of monitors and try to recognize any possibility of specious
behavior. However, this approach is very limited when using multiple cameras with multiple
angles, this is why recent video surveillance systems are equipped with processing unites to
analyze, detect, and sometimes recognize objects or persons, and detect and understand their
motion.

In order to apply analysis on videos of video surveillance system, Object Detection and
Object Tracking Algorithms were developed and implemented in CCTV systems. They can
be found in chapter 3.

5 Applications

Visual surveillance has a wide range of potential applications, such as a security guard for
communities and important buildings, traffic surveillance in cities a
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5.1 Access control in special areas

When somebody is about to enter a restricted area, the system could automatically obtain
the visitor’s features, such as height, facial appearance and walking gait from images taken

in real time, and then decide whether the visitor can be cleared for entry on not.

Figure 2.10: Employee Access Control[24]

5.2 Crowd flux statistics and congestion analysis

Personal identification at a distance by a smart surveillance system can help the police to catch
suspects. Having a biometric feature database of suspects, and placing visual surveillance
systems at locations where the suspects usually appear, e.g., subway stations. The systems
automatically recognize and judge whether or not the people in view are suspects.

Figure 2.11: Crowd Statistics[25]

5.3 Anomaly detection and alarming

In some circumstances, it is necessary to analyze the behaviors of people and vehicles and

determine whether these behaviors are normal or abnormal

Figure 2.12: Density estimation addresses people tracking[26]
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5.4 Loss Prevention

In case of expensive equipment or large amounts of merchandise, it is important to protect
those assets by monitoring workers and individuals that deal, or get close to these assets.

Figure 2.13: Loss Prevention[25]

5.5 Traffic Monitoring

To count cars passing through or to improve the flow of traffic for better travel times, even

record fast moving cars, identify them or identify an accident possibility.

Figure 2.14: Bad Conduct Detection[27]

5.6 Interactive surveillance

It’s used for social security and cooperative surveillance, one or multiple cameras could be
used to emsure the security of an entire community. It can be used for example to trace

people’s flow and number in public and private areas.
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Figure 2.15: Interactive Surveillance : Immersive System for Browsing and Visualizing
Surveillance Video[28].

6 Privacy in Video Surveillance

Video purveillance has become commonplace in recent years. By means of closed circuil
television (CCTV) technology, individuals are observed without their knowledge in public
buildings, train stations, stores, elevators, locker rooms, and school hallways. They’re caught
at ATMs and when stopped by the police in patrol cars. In London, the average citizen is
caught on CCTV cameras 300 times a day[29], and in the United Kingdom alone there are
more than 4 million CCTV cameras.

The only problem that comes with the safety of video surveillance systems is that it
facilitates the collection of information about an individual aud iucreases Lhe risk of wisuse
and abuse ot surveillance data, which is against the the privacy of the individual.

Far from courts, a solution can be found[30], where private properties or individuals,
captured in video surveillance footage, are not accessed freely. Instead the access to the
different data types is defined by appropriate privileges.

- Privacy doesn’t mean Safety -

Figure 2.16: Privacy in Video Surveillance : Example of behavioral data. The information

provided by the bounding boxes of the vehicles and their trajectories over time is sufficient

for traffic monitoring purposes. Instances of the real objects are stored and accesses only by
authorized users[31].
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7 Conclusion

In this chapter, we discovered the science behind video surveillance, its history and its
domains of application, in addition of an ethical view on privacy in CCTV systems.

From this chapter we can conclude that video surveillance systems are very crucial for
security applications, which means that developing these systems is a gain for security.

The next chapter will explain how object detection and tracking methods helped to improve

and develop the performance of video surveillance systems.



Chapter 3

Object Detection and Tracking in

Video Surveillance
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1 Introduction

Object tracking is an active research problem in computer vision. It is needed in several areas
including video indexing, medical therapy, interactive games, or in this case, surveillance sys-
tems. Tracking and detection are very critical in video surveillance systems as their accuracy
greatly impacts the eventual success or failure of later scene analysis[32].

In this chapter we will talk about deferent approaches of object tracking, to see how they
can help making better video surveillance systems.

3
1. :fracknrfg

Figure 3.1: The surveillance scenario with multiple similar objects[33].

2 Definition

In its simplest form, object tracking can be defined as the problem of estimating the trajectory
of an object in the image plane as it moves in the scene|34]. The algorithm responsible of
tracking is called “Tracker”, a tracker assigns consistent labels to the tLracked ohjects in
different trames ot a video. Additionally, depending on the tracking domain, a tracker can
also use, and in the same time provide object-centric information, such as orientation, area,
or shape.

Tracking objects can be complex[35] due to:

¢ Loss of information caused by projection of the 3D world on a 2D image.

¢ Complox object motion.

e Partial and full object occlusions : like tracking a person in crowd.

e Complex object shapes

o Real-time processing requirements.

e Critical Situations : represents general critical situations met in video sequence, defined
by computer vision community[36]. They are :
Noise image due to a poor quality image source (NI), Camera jitter (CJ), Camera

automatic adjustments (CA), Time of the day (TD), Light switch (LS), Bootstrapping
(B), Camouflage (C), Foreground aperture (FA), Moved background objects (MO),
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Inserted background objects (IBO), Multi-modal background (MB), Waking foreground
object (WFO), Sleeping foreground object (SFO) and Shadows (S).

Object detection and tracking has become almost axiom in automated and semi-automated
video surveillance systems. It affords less human dependency systems, especially for systems
with hundreds of cameras, in the same time, it opens the door for machine vision errors that

can cost a lot in such systems.
In addition of video surveillance systems, object tracking can be found in :

e Video indexing: automatic annotation and retrieval of videos in multimedia databases.
¢ Vehicle navigation: video-based path planning and obstacle avoidance capabilities.

¢ Human-computer interaction: gesture recognition, eye gaze tracking for data input to

computers, etc.

e Motion-based recognition: human identification based on gait, automatic object detec-

tion, etc

T"igl"'ﬂ 3.2: Car “'a‘u"killc Too MMW Clirn - Thasd by eoveslunede other cury from BMW car's
Laser lights [37].

3 A Survey on Object Detection and Tracking In Video Sur-

veillance

There arc loto of surveys about object detection and liacking, with defereul wethods of
wlgurithu clussifications.  According to [38] and [19], Ohject tracking algaiitluue in videu

survoillanco are callod as follow : r/\QP E,
3.1 Motion Detection </

Nearly every visual surveillance system starts with motion detection. Motion detection aims
to segment regions corresponding to moving objects from the rest of the image. Detecting
moving regions provides a focus of attention for later processes such as tracking, object

classification and behavior analysis. Because only these regions need be considered in the
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later processes, they are greatly dependent on it.The process of motion detection usually

involves the use of one of these methods :

3.1.1 Background Subtraction

Background subtraction is a popular method for motion segmentation, especially under situ-
ations with a relatively static background. It detects moving regions in an image by taking
the difference between the current image and the reference background image.

In case of a pixel-by-pixel old fashion method, it is the simplest, but extremely sensitive to

changes in dynamic scenes derived from lighting and extraneous events etc.

3.1.2 Temporal differencing

Temporal differencing makes use of the pixel-wise differences between two or three consecutive
frames, the current image frame is subtracted either by the previous frame or the next frame
of the image sequences to extract moving regions.

Temporal differencing is very adaptive to dynamic environments, but generally does a poor
job of extracting all the relevant pixels.

3.1.3 Optical Flow

Optical flow based motion scgmentation uses characteristics of flow vectors of moving objects
over time to detect moving regions in an image sequence.
This method is computationally data intensive and took more time to segment the foreground
objects from the scene and that is why there is a need to use specialized hardware (such as
FPGA, GPU cards etc.).

The optical flow method is generally used as a feature for both object detection and object
tracking.

3.2 Object Classification

Object classification refers to the task of an automatically distinguished moving target of
interest from other objects, across successive frames in an image sequence.

For example, the image sequences captured by surveillance cameras mounted in road traffic
scenes probably include humans, vehicles and other moving objects such as flying birds and
moving clouds, etc. To further track drivers and analyze their behaviors in their cars, it is
essential to correctly classify moving objects.

-\ This is why classifying objects is an essential process. )
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3.3 Object Tracking

After motion detection, surveillance systems generally track moving objects from one frame to
another in an image sequence. The tracking algorithms usually have considerable intersection

with motion detection during processing.

3.3.1 Region-based Tracking

According to the first paper about Region-based tracking[40], it’s a method that can track
objects according to variations of image regions corresponding to moving objects. For these
algorithms, the back di i intained d icall

gori , the ground image is maintain ynamically

3.3.2 Contour-based Tracking

Also boundary-based tracking algorithms, they track objects by representing their outlines
as bounding contours and updating these contours dynamically in successive frames. Pre-
vious works on object tracking showed theoretically and experimentally that this method is
insensitive to illumination changes, it can describe objects more simply and more effectively
and reduce computational complexity. Even under disturbance or partial occlusion, these al-
gorithms may track objects continuously. However, the results of this method are inaccurate

if the image wasn’t well prepared hefore.

3.3.3 Feature-based Tracking

Feature-based tracking algorithms perform recognition and tracking of objects by extracting
elements, clustering them into higher level features and then matching the features between
images. Tracking of the object is based on the features, requires selecting the right features,
which plays a critical role in tracking. In general, the features used for tracking must be
unique so that the objects can be easily distinguished in the feature space. The following

various features are used for object tracking{41]:

e Color
e Hdges
e Centroids

e Texture
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3.3.4 Model-based Classification

Model-based tracking algorithms track objects by matching projected object models, pro-
duced with prior knowledge, to_i il_p_a_g’e_;d_a}j_:g.. The models are usually constructed before
tracking with manual measurement. It is an example of feature-based tracking. The reason
why it is independently described is due to the requirement of grouping, reasoning, and ren-
dering, which may defer it from the feature based tracking. In addition, prior knowledge
about the investigated models is normally required.

3.3.5 Optical Flow-based Tracking

Object tracking with optical flow uses the pattern of apparent motion of objects, surfaces,
and edges in a visual scene caused by the relative motion between objects and the camera
and the scene. It uses a vector field which describes how the image changes with time, to
keep tracking of the object of interests, which is in this case an ensemble of vectors having
almost the same velocity and the same direction,

Optical-flow-based methods can be used to detect independently moving objects even in
the presence of camera motion. However, most flow computation methods are computation-
ally complex and very sensitive to noise, and cannot be applied to video streams in real time
without specialized hardware.

A, —

'------------
sty

A Event Query l- :

Figure 3.3: Architecture of Video Surveillance System Equipped with Object Detection
and Tracking Capabilities[42].
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4 Gaussian Mixture For Background Subtraction

4.1 Background Modeling for Video Surveillance

Background subtraction is based on the assumption that the difference between the back-
ground image and a current image is caused by the presence of moving objects. Pixels that
have not changed are considered as “background” and pixels that have changed are considered
as “foreground” that contains “moving objects” [43].

In background subtraction, we have to use background modeling (or representation) that
describes the kind of model used to represent the background. It essentially determines
the ability of the video surveillance system to deal with uni-modal (static) or multi-modal
(dynamic) backgrounds. 7 l/)

/

4.2 Gaussian Model

In Gaussian Background modeling, to represent the background we model the history pixel’s
intensity values over time by a Gaussian. The first approach of this method of modeling[44]
used a single Gaussian (8G). Authors proposed fitting a Gaussian Probabilistic Density Func-
tion (PDF) on the most recent n frames. In order to avoid fitting the PDF from scratch at
each new frame time t, a running (or on-line cumulative) average is computed.

However, representing changes with one Gaussian as unimodal model cannot handle dynamic
backgrounds when Uere are waving lrees, waler rippling or moving algae. To solve this prob-
lem, the Mixture of Ganssians (MOG) or WM has heen nsed tn
model dynamic backgrounds[45]

4.3 Background Modeling using Mixture Of Gaussians

In the next steps, we will explain in detail, and step by step, how GMM algorithm works[46],
on the most used case : RGB images.

(A) Each pixel is characterized by its intensity in the RGB color space. Then, the probability

of observing the current pixel value is considered given by the following formula in the

multidimensional case:
K
P(Xt) = Zwi,t-ﬂ Xtr )u'i,tsz (31)
=1 1t
Where : - "

K : is the number of distributions
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(B)

(©)

(D)

(F)

wi © is a weight associated to the ith Gaussian at time ¢ with :
it : The mean, and

Zi,t - the standard deviation

We calculate i the Gaussian probability density function :
1 1 -1
- ez X-m) YT (X
7 (Xc,ﬂ, Z) P (3.2)

The next step is defining the covariance matrix. For computational reasons, we assume
that the RGB color components are independent and have the same variances[45]. So,

the covariance matrix will be :

D=l (3:3)
it
For now, for each pixel we have a mixture of K Gaussians, combined define the back-
ground Mixture Of Gaussians Model.

Once the background model is defined, the different parameters of the mixture of Gaus-
sians must be initialized.
The parameters of MOG’s model are : K, w;y, ftig, and ), .

K determines the multi-modality of the background, it’s determined by the available
memory and computational power[45] [43], and it’s usually set :

S K28 (3.4)

The initialization of the weight w;;, the mean p;; and the covariance matrix zi,t is
better be made using an EM algorithm. To avoid huge amount of calculations, we can
use the K-mean algorithm, else they can be initialized using intensities of pixels from

previous frames of an empty background.

After initializing and updating parameters, we can make the first foreground detection
and then update the parameters.

First we order the K Gaussians according to this ratio :

Ty = wj/aj (3.5)

Following this ratio. This ordering supposes that a background pixel corresponds to a
high weight with a weak variance due to the fact that the background is more present

than moving objects and that its value is practically constant.
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(F) The first B Gaussian distributions which exceed certain threshold T are retained for a
background distribution using this formula :

b
B = argminy (z Wit > T) (3.6)

i=1
The other distributions are cousidered to represent a foreground distribution.

(G) When a new frame incomes at times ¢ + 1, a match test is made for each pixel. It
calculates if a pixel matches a Gaussian distribution if the Mahalanobis distance! :

=1
\] (X~ #i,t)T - Z (Xe1 — pig) < ko (3.7)

it

where k is a constant threshold :
k=235 (3.8)

The boolean result represent two cases :

e The TRUE Case : A match is found with one of the K Gaussians.
In this case, if the Gaussian distribution is identified as a background one, the
pixel is classified as background else the pixel is classified as foreground.

e The FALSE Case : No match is found with any of the K Gaussians.
The pixel is classified as foreground.

At this step, we obtain the binary mask of the foreground.

(H) To make the next foreground detection, the parameters must be updated.
Using the match test 3.7, we can obtain two cases :

e The TRUE Case : A match is found with one of the K Gaussians.

For the matched component, the update is done as follows :

Wigy1 = (1 - Ct) Wit 4+« (3.9)
pigr1 = (1 — p) pig + p-Xepa (3.10)
o2e1 = (L= p)ots+ p(Xeg1 — prigr) - (Kegr — pig1)” (3.11)

where o : is a constant learning rate and p :

p=an (Xt+17 i Z) (3.12)

*The Mahalancbis distance is a measure of the distance between a point P and a distribution D[47],
introduced by P. C. Mahalanobis in 1936.
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For the unmatched components, ;2 and )" remain unchanged, only the weight is

re-calculated by :
Wit+1 = (1 ocee Of) Wj,t (313)

e The FALSE Case : No match was found with any of the K Gaussians.
In this case, the least probable distribution k& is replaced with a new one with

parameters :
Mk, t+1 = LowPriorWeight (3.14)
Prge1 = Xep1 (3.15)
nizc,t-i»l = LargelnitialVariance (3.16)

(I) Once the parameters maintenance is made, foreground detection can be made and so

on, we continue the same steps for every frame.

(b)

Figure 3.4: Background Subtraction Using MOG : (a) The first row presents original
scenes[48]. (b) The second row shows the corresponding foreground masks obtained by the
MOG[43]

5 Conclusion

In this chapter, we presented a preamble on the definition and the most used methods of
object detection and tracking in video surveillance in general. In addition, we highlighted the
—_— D

—deferent challenges where these methods could lose their efficiency.
We explained also, in detail, the concept of background modeling, and how it was es-

tablished by the original Gaussian Mixture Model method. Based on this explanation, and
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the result of GMM method, we will propose an improved GMM approach for background
modeling in the next chapter.
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1 Introduction

In this chapter, we will discuss the limitations of the original Mixture Of Gaussians model
algorithm, and the reason why we should improve it. Then, we will focus on our new approach,
and we’ll discuss in details ,t}fg steps we followed to improve the original MOG model method.

2 Limitations of GMM algorithm

The MOG model deals with the movement in the background (MB), and the gradual illumin-
ation changes (TD) greatly, due to the multi-modality in the representation step. However,
the original GMM approach has its disadvantages that come along with assumptions and
parameters that build the core of the algorithm. These are some :

¢ Handling sleeping foreground objects (SFO) : The original GMM model detects fore-
ground objects, Lhen removes Lhem I they stay o while In the scene, as a part of the
process of updating background model.

¢ Handling critical situations, light switch (LS) : Quick illumination changes in the back-
ground are detected as a foreground which implies a false detection[46].

e Bootstrapping problem (B) : For BGS it is valuable to be able to initialize the algorithm
quickly, even as fast as using an only single frame, which is known as bootstrapping[49].
Unfortunately, original GMM needs time to initialize the first model of the background.

e Pre and posl-processing : Furlhermore, some crilical situations need pre-processing or
post-processing; the case of noise image (NI), camera jitter (CJ) and Camera automatic

adjustments (CA).

% e Using RGB\; this can permit to make well shadows detection (S) like in Figure 3.4.

3 Literature of GM Irhprovements

To solve these different limitations, many improvements can be found in the literature of BGS

based on this model. Proposed improvements are classified to two major classes

S} (A) Intrinsic Model Improvements : concern directly the MOG model like the initialization
and the maintenance of the parameters, and the foreground detection, by improving

the core of the algorithm.

_____._—? (B) Extrinsic Model Improvements : concern the conditions that surround the algorithm,
using the knowledge of temporal and spatial information we add one or more external

processes without making any changes to the core algorithm.
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Intrinsic Model Improvements

e Number of Components - K

e Initialization of the Weight, the Mean and the Variance

— By using another algorithm for the initialization

— By allowing presence of foreground objects in the training sequence

Maintenance of the Weight, the Mean and the Variance

e Learning rates a and p

— By using better settings
— By adapting the learning rates

Threshold T

Foreground Detection

— By using a different measure for the matching test
— By using a Pixel Persistence Map (PPM)

— By using the probabilities

— By using a foreground model

— By using some matching tests

— By using the most dominant background model
» Fealure Size

— Block-wise approaches

— Cluster-wise approaches
e Feature Type

— Color features
— Edge features

— 'l'exture teatnres
— Stereo features
— Spatial Features
— Motion Features

— Video Features
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4 Qur Method

4.1 Hypothesis

In order to improve GMM algorithm in video surveillance, we tend to develop a new algorithm
based on both : the original GMM and the following hypothesis :

In a very small temporal window (1/24)s, between the frame used to
generate the Gaussian and the frame which subtraction is being applied
on, if the density of a pixel shifts very far from the mean, then it’s more

likely to be “camera noise”, and it’s considered as so.

K

Figure 4.1: Camera noise in a Gaussian : following the previous hypothesis, the zone
considered as camera noise is in red.

This means, that pixels that doesn’t shift too far from the mean using the old (Gaussian,
are more likely to be background, and they are considered as so.

B

Figure 4.2: Background intensities in a Gaussian : following the previous hypothesis, the
zone used for background modeling is in blue.

The hypothesis of the algorithm can be summarized in the following Figure 4.3 :
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Most used Gaussian

Least used Gaussian

Ham [

Figure 4.3: Target Zone of the Algorithm

4.2 Core Algorithm

4.2.1 Initialization

e After acquiring the first frame, we begin by the process of image segmentation. In order
to apply segmentation we used two deferent approaches :

1. Color Segmentation : Segmenting image to zones having same or close color
density.

2. Bloc Segmentation : By dividing the frame into equal square surfaces (or boxes).

e BEach zone contains pixels coordination, in addition to 1;geq a value called “ideal mean”.
The ideal mean f1;4.,; is meant to represent the intensity of the zone, when it’s all covered
by background. And it’s calculated by finding the average values of every Ganssian’s

mean assoeiated to the zone m all times.

4.2.2 Background Modeling

Before getting into foreground detection, any subtraction algorithm should have a reference
model representing the background, which the system will use to deduct whether there are

new objects presented into the scene or not.

e To obtain the background model, first, we generate one Gaussian for every zone in the
first frame.

e For the next frame, we do the same thing, but we gather the generated Gaussians of
every zone in a set of Gaussian Mixture. (for 9 frames we get 9 Gaussians for every

zone). K

o The number of Gaussians in the Gaussian Mixture is limited K = 10 , so, generating

Gaussians by time will follow one of these two cases :
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1. kgen < K : The number of generated Gaussians ke, didn’t reach the limit, so we
add the new Gaussian to the set of Gaussian Mixture.

2. kgen = K : The ensemble of Gaussians is complete, before adding the new Gaus-
sian, we merge the two least used Gaussians into one, then we add the new one.

e The merge of Gaussians is based on the following conditions :

— We keep the Gaussian with the closer mean to the ideal mean.

— If both Gaussians in are not very far from the ideal mean, then we keep the one
with the smaller standard deviation 5D.

Since using single frame model (in other BGS Algorithms) helps detecting any new ob-
ject and keep them highlighted no matter how long they stay (including lighting changes and
noise.. etc.), and using a set of renewable frames (like in original GMM Algorithm) helps
getting a more adaptive model (eliminates noise and fast light changes) but removes objects
that stay too long in the scene. To achieve best of both, the new algorithm relics on a value
previously mentioned in the document by the term “ideal mean”, which helps creating an

adaptive background model represented in one single image.

(a) (®)

Figure 4.4: Adaptive Background Modeling in Our Approach : (a) represents a [rame al
time ¢, (b) and (c) represent the background model for the frame at time ¢, (d) represents
the very first frame at time %5
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1. kgen < K : The number of generated Gaussians kgen didn’t reach the limit, so we
add the new Gaussian to the set of Gaussian Mixture.

2. kgen = K : The ensemble of Gaussians is complete, before adding the new Gaus-
sian, we merge the two least used Gaussians into one, then we add the new one.

e The merge of Gaussians is based on the following conditions :

— We keep the Gaussian with the closer mean to the ideal mean.

— If both Gaussians in are not very far from the ideal mean, then we keep the one
with the smaller standard deviation SD.

Since using single frame model (in other BGS Algorithms) helps detecting any new ob-
ject and keep them highlighted no matter how long they stay (including lighting changes and
noise.. etc.), and using a set of renewable frames (like in original GMM Algorithm) helps
getting a more adaptive model (eliminates noise and fast light changes) but removes objects
that stay too long in the scene. To achieve best of both, the new algorithm relies on a value
previously mentioned in the document by the term “ideal mean”, which helps creating an

adaptive background model represented in one single image.

(d) (©)

Figure 4.4: Adaptive Background Modeling in Qur Approach : (a) represents a frame at
time ¢, (b) and (c) represent the background model for the frame at time ¢, (d) represents
the very first frame at time g
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4.2.3 Background Maintenance

In this step we calculate both overall weight of the GM, and their current weight as well using
the following algorithm :

Algorithm 1 Weight Updating Algorithm

1: for each zone do

2: for each Gaussian associated to the zone do
3 for each pixel in the zone do
4: if | pixellntensity - u | < SD then Sl =25
5: overallWeight ++
6: currentWeight ++
% else
8: overallWeight —
9 end if
10: end for
11: end for

12: end for

4.2.4 Background Subtraction

In order to apply subtraction, we start by finding the most used Gaussian, and least used
Gaussian in the Gaugsian Mixture according to their current weight calculated in the step
before.

Then, pixels are classified “background / foreground” using the following algorithm :

Algorithm 2 Background Subtraction Algorithm
1: for each zone do

2: for each Gaussian associated to the zone do

3 for each pixel in the zone do

4 if | pixellntensity - p, | > Xsp and | pixellntensity - 1 | < Ysp then
5 pixel = background

6: else

7 pixel = foreground

8 end if

9 end for
10: end for

11: end for
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Where :
4 = is the mean of the least used Gaussian, y,, : is the mean of the most used Gaussian, and
Xgsp and Ygp : are predefined values.

To better understand how least and most Gaussians are affecting the foreground/back-
ground segmentation, Figure 4.5 shows the result we get using only the most used Gaussian
to determine the camera noise, to set it as background. And Figure 4.6 shows the result of
using only the least used Gaussian to find the background, wheres Figure 4.7 shows the result
of using least and most used Gaussians combined in the whole algorithm.

Figure 4.6: Using Most Used Gaussian to Determine the Background
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Colore Based Zonng :

Figure 4.7: The Final Result Using Least and Most Used Gaussians Combined

Our Method is summarized in the next flow chart in Figure 4.8.

[ Raw image

Figure 4.8: General Flow Chart of Our Approach for the Improved GMM Algorithm
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1 Introduction

After presenting the deferent steps to apply both original GMM method and our new Ad-
aptive GMM method in the precious chapter, it is time in this chapter to present our own
implementation of our method, besides the detailed tests and results on deferent international
well designed data sets to get better and rational judgments on the efficiency of the proposed
Algorithms.

2 Conception

2.1 Application’s Logic

In order to maintain a comprehensive programming approach for the implementation of the
proposed Gaussian Mixture Model methods, we used the Oriented Object design pattern.
Using Oriented Object Programming helps enforcing good software design principles like en-
capsulalion, cohesion, low coupling, etc. It uses the concept of Class-Object and makes the
source code more readable and understandable, and therefore ultimately more maintainable[50].

These are the classes of our application project grouped by package :

Application Project
Package Class Description
BxGMM Handling Block based GMM method.
appcore Engine The main thread, feeds frames to the running
method and updates the main frame.
RxGMM Handling Region based GMM method.
MapGenerator Segmentation of images for Rx-GMM.
Pixel A better definition of a pixel with its coordin-
appcore.helper ates.
Seeker Loops through image seeking for unclassified
pixels for region-based segmentation.
UnZipper Unzipping sipped files of doforent integrated
datasets.
ZoncBoudaries Defining a zone for Rx-GMM.
BenchmarkedDataset | Contains deferent metrics after benchmarking a
benchmark specific dataset.
BenchFrame Frame for selecting result and groundtruth
frames.
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Benchmarker Calculating deferent benchmark metrics after
comparing groundtruth frames with result
frames.

dataset No - Class Contains zipped files of ready datasets

images No - Class The images used to enhance user experience in
deferent graphical user interfaces.

. Main Running the main program

—— Statics Contains objects that must be known across all

classes and packages of the application.
. DatasetChooser Offering multiple input methods for selecting a

= database.

Mainkrame The main frame of the application.

Table 5.1: Deferent Packages and Classes used in the application’s project

2.2 Application’s Graphical User Interface

., New Adzptive Gaussian Mixture Model for Video Surveillance - PFE Master Ingénisrie ces Médias |
_ Fle - Edit About
Background Subtraction Method

[ Extemal Datasst | Ready Datssets |
‘

([ Re-OMM Cuknt Furing
Bvf3MM Rinck 7aning

Delected Foregiound

Input Fame Background Hodel

[ l25Mode240Mo | processay aasel . | _—'5‘b B

Figure 5.1: Application’s Main GUI
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Figure 5.2: Ergonomic Menus : (a) File menu with the possibility of saving benchmark
result to an Excel file, (b) Edit menu to control the run of the algorithm, (¢) About Menu
for more information

Figure 5.3: Multiple Handy Dataset Input methods : (a) Easy to use method by dragging
and dropping image files to import them, (b) import datasets using the file chooser, (c) Ready
datasels Lo select and use on the go

Figure 5.4: Excel-Ready Benchmark Resuits : After Benchmarking, the results are auto-

matically saved in an Excel file for better interpretation later.
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3 Implementation

3.1 Software
3.1.1 Programming Language

In order to implement our method, we chose the Java programming language. In addition of
having a good programming experience with it, We have chosen Jave because it’s one of the
best cross-platform programming languages.

Developed by James Gosling at Sun Microsystems in 1990, Java is an object-oriented pro-
gramming language available for an array of development requirements; right from mobile
application to enterprise web applications, web services to desktop applications. Due to its
long standing formula (WORA) “Write Once and Run Anywhere”, Java remains a very pop-
ular programming language.

We used the Java Development Kit JDK version 8 update 45[51].

3.1.2 Integrated Development Environment

As a development environment, we used IntelliJ IDEA Ultimate 14.1.2 to manage our source
code with more efficiency. IntelliJ IDEA Ultimate is a paid IDE, but it’s one of the most
intelligent Java IDEs in current time. It’s used by Google, and main big software companies
for developing their own deferent and powerful software solutions. One of the greatest things
about this IDE, is that it supports all the latest modern technologies and frameworks available
out of the box[52].

3.1.3 Third-Party Libraries

e JavaCV 0.6 : A Java library that uses wrappers from the .JavaCPP Presets of com-
monly used libraries by researchers in the ficld of computer vision (OpenCV, FFm-
peg, libdc1394, PGR FlyCapture, OpenKinect, videoInput, ARToolKitPlus, and fland-
mark), and provides utility classes to make their functionality easier to use on the Java
platform[53]. JavaCV also comes with hardware accelerated full-screen image display,

we used it to better manage image feed from both camera and dataset.

s Javal'X 8 SDK : Javal"X affords a very customizable, beautiful, and rich user inter
face in addition of a great tools to draw graphs for statistics and math plots[54]. We
used this library for plotting Gaussians.
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o WebLaF 1.29 : WebLookandFeel is a Java Swing Look and Feel and extended com-
ponents library for cross-platform applications[55]. We used it to give our application’s

user interface a simple and stylish cross-platform default theme.

e Apache Commons IO 2.4 : One of the best of Iava libraries which assists with
developing input / output functionalities with its verity of utilities[56].

e Apache POI 3.12 : a Java API for manipulating various file formats based upon the
Office Open XML standards (OOXML) and Microsoft’s OLE 2 Compound Document
format (OLE2)[57]. We used it to save benchmark results in Microsoft Ezcel file (.xls)

3.1.4 Test Operating Systems

In order to really test the behavior of our application, we tested it on two major operating
systems; a commercial one : Microsoft Windows and an open source OS : Linuz.
On Windows we tested on Windows 7 SP1 x64 and the latest Windows 8.1 x64.
On Uniz we selected it’s popular distribution called Ubunitu 14.04 LTS 64 bit (Long Term

Service) which delivered the shortest execution time.

3.2 Hardware
‘We used 3 deferent machines to test the application :

e Costum Desktop : CPU : Intel i3 - 3210 @ 3.20 GHz, RAM : 4 Go DDR3, GPU :
AMD Radeon HD 6570 (4 Go GRAM).

e HP Laptop : CPU : Intel i5 - 3230M @ 2.60 GHz, RAM : 4 Go DDR3, GPU : NVIDIA
GeForce 820M (3 Go GRAM).

e Lenovo Laptop : CPU : Intel i7 - 3632QM @ 2.20 GHz, RAM : 6 Go DDR3, GPU :
NVIDIA GeForce

4 Tests and Results

In order to test our method, we followed the scientific community of video surveillance dis-
cipline for testing new algorithms, in which, they tend to test algorithms applied in video
surveillance on multiple specialized datasets. Except for basic datasets, each dataset contains
input frames and ground-truth frames. Input frames represent a challenge of real life in video
surveillance systems, and ground-truth frames are made manually and they represent what

should the perfect result look like, so we can avoid relativity when we evaluate the results.
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In order to do so, we selected a new change detection benchmark dataset that was
evaluated for the IEEE Change Detection Workshop 2012 [58], and its expanded version of
the IEEE Change Detection Workshop of 2014 [59], but we used also another video of our

own. All Dataset characteristics are given in Table 5.2 :

Dataset Video Categories Frame Number Groundtruth
Name Size of Frames Frames
Highway[58]  Baseline 320 x 240 1700 Yes

Office[58] Baseline 360 x 240 2050 Yes

Sofa[58] Intermittent Object Motion 320 x 240 2750 Yes

Hallway Random Dataset 640 x 480 3402 No
Snowfall[59]  Bad Weather 720 x 480 6500 Yes
Turbulence[59] Turbulence 720 x 480 5000 Yes

Table 5.2: Dataset Characteristics

Our tests are classified by dataset type as follow :
For all next Figures : Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8, Figure 5.9, Figure 5.10,
Figure 5.11, and Figure 5.12, Figure 5.13 :
(2) is the original frame (n°n ),
(b.1) and (b.2) in order, represent the background model obtained by our method when using
color feature-based segmentation, and the result frame of the subtraction,
(c.1) and (c.2) in order, represent the background model obtained by our method when using
bloc-based segmentation, and the result frame of the subtraction,
(d) the result of subtraction in original GMM®.

4.1 Baseline

"T'hese sets are fairly easy, but not trivial to process. They are provided mainly as reference[58].

4.1.1 Highway

This sequence represents a basic example of traffic in a highway in daytime in good weather
and light conditions. The background has a static part -which is the road-, and a dynamic
part -which is the trees- with shadow on the road[58].

We obtained Background subtraction results of original GMM from this proposed massive evaluation of
BS algorithms called : BGSLibrary [60] [61], Current version[62] is composed of 37 BGS methods, provided in
an easy-to-use C++ framework based on OpenCV, it was referenced in [43] for evaluation and benchmarking
change detection algorithms.



Implementation and Tests

53

Figure 5.5: First Test on Highway set :

Figure 5.6:

) (€2)

@

€2

Frame N°271, Real Size : 320x240 pz

Second Test on Highway set : Frame N°375

Rx-GMM

Bx-GMM

Original GMM

(+) All new objects are
highlighted.
(-) some objects have some

missing parts.

(-) hard shadows are detec-
ted.

(+) Dynamic out of in-
terest regions are set as
background with minimal

noise.

(-) NOT all new objects are
highlighted.

(-) some objects have some
missing parts (Black Box
effect).

(-) hard shadows are detec-
ted.

(+) Dynamic out of in-
terest regions are set as
background with minimal

noise.

(4) All new objects are
highlighted.
(-) some objects have some

missing parts.

(-) hard shadows are detec-
ted.

(-) Dynamic out of interest
regions are set as back-

ground with lot of noise.

Table 5.3: Comparison Between Algorithms’ Performance in the Highway Dataset
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4.1.2 Office

This sequence represents indoor surveillance example in an office, where the person of interest
(Pol) is a student. This set contains two challenges : Light switch (LS) challenge, when the
student enters the office, and affects its illumination, and the second challenge is the sleeping
foreground object (SFO) when the students stand still reading the book[58].

ey

(c2)

@

Figure 5.7: Second Test on Highway set : Frame N°1159, Real Size : 320x240 pzx

Rx-GMM

Bx-GMM

Original GMM

(+) Pol is highlighted
when he enters the scene.
(+) Pol is always detec-
ted even if he was totally
stable.

(1)

without missing parts.

Rol are doteoted

(+) Light distortions are
not detected when Pol
enters.

(+) Background is set with
minimal noise.

(+) Pol is highlighted
when he enters.
(+) Pol is always detected

even if he’s not moving.

() Bome purts ure missing
from Pol. (Black Box ef-
fect).

(-) Light distortions are de-
tected when Pol enters .

(+) Background is set with
minimal noise.

(+) Pol is
when he enters.
(-) Pol is almost NOT de-
tected if he’s not moving.

highlighted

(-) Bome parts arc nissing
from Pol.

(+) Light distortions are
not detected when Pol
enters.

(+) Background is set with
minimal noise.

Table 5.4: Comparison Between Algorithms’ Performance in the Office Dataset

4,1.3 Sofa

This set is under the intermittent object motion dataset. In this sequence, people come and

sit for a short period of time in the sofa, they go and they leave small objects in the scene.
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This set represents the challenge of abandoned objects and objects stopping for a short while
and then moving away[59].

) (c2)

Figure 5.8: Test on Sofa set : Frame N°1124, Real Size : 320x240 px

Rx-GMM Bx-GMM Original GMM

(+) Rol are highlighted (+) Rol are highlighted (+) Rol are highlighted
when they enter the scene. when they enter the scene. when they enter the scene.
(+) Small abandoned ob- (4) Small abandoned ob- (-) Small abandoned ob-
jects are always detected.  jects are always detected.  jects are not detected.

(-) Background is set with (+) Background is set with (+) Background is set with

noise. minimal noise. minimal noise.

Table 5.5: Comparison Between Algorithms’ Performance in the Sofa Dataset

4.1.4 Our dataset - Hallway

This set represents a randomly selected scene, that we filmed in order to test algorithms on
non manipulated frames. This scene was filmed inside our computer science department. It
represents multiple challenges : Long term vertical camera jitter(CJ), High Definition camera
(1280x720 pz), Camera with automatic adjustments (CA), and foreground sleeping object
(FSO).
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Figure 5.9: First Test on our Hallway set : Frame N°

Flgure 5.10: Sccond Test on our Hallway sef. :

= ©2)

(c.])

1991, Real Size : 640x480 pz

Frame N°3003

Rx-GMM

Bx-GMM

Original GMM

(+) Pol is highlighted
when he enters the scene.
(+) Pol is always detected
when he is totally stable.
(+) No ghosting effect
when Pol leaves his stable
position.

(-) Sensitive to camera jit-

ter.

(+) Pol is highlighted
when he enters.

(+) Pol is always detected
when he is totally stable.
(+) No ghosting effect
when Pol leaves his stable
position.

(-) Sensitive to camera. jit-

ter.

(+) Pol is highlighted
when he enters.

(-) Pol is almost NOT de-
tected if he’s not moving.
(-) Ghosting effect when
Pol leaves his stable posi-
tion.

(4+) Not sensitive to cam-

era jitter.

Table 5.6: Comparison Between Algorithms’ Performance in the Hallway Dataset

4.2 Bad weather

A sequence that represents outdoor videos showing low-visibility winter storm conditions.
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4.2.1 Snow fall

This set includes traffic scene in a heavy snow fall. It represents a double challenge: in

addition to snow accumulation, the dark tire tracks left in the snow have potential to cause

false positives, and the heavy snow causes a strong noise in images[59].

(C3Y)

“3

Figure 5.11: Test on Snowfall set : Frame N°816, Real Size : 540x630 px

Rx-GMM

Bx-GMM

Original GMM

(+) Rol are highlighted (+) Rol are highlighted (+) Rol are highlighted

when they enter the scene.

when they enter.

when they enter.

(+) Tire traces are not de- (+) Tire traces are not de- (+) Tire traces are not de-

tected.

tected.

tected.

(+) Background is set with (-) Background is set with (-) Background is set with

minimal noise.

strong noise.

noise,

Table 5.7: Comparison Between Algorithms’ Performance in the Snowfall Dataset

4.2.2 Dllazacd

4.3 Air Turbulence

This set is moving objects at noon during a hot summer day. The scene is filmed at a distance

5 km with a telephoto lens, the heat causes constant air turbulence and distortion in frames.

This results in false positives. The size of the moving objects is small[59].

The air turbulence category presents very similar challenges to those arising in long-distance

remote surveillance applications.



Implementation and Tests 58

D - (€2

Figure 5.12: Test on Turbulence set : Frame N°368, Real Size : 720x480 pz

Rx-GMM Bx-GMM Original GMM

(+) Rol are highlighted ‘- (+) Rol are highlighted (+) Rol are highlighted
when they enter the scene. when they enter. when they enter.

(+) Small objects are de- (+) Small objects are de- (+) Small objects are de-
tected. tected. tected.

(-) Lots of false positives (+) Fewer false positives.  (-) Lots of false positives
caused by air turbulence. caused by air turbulence.

Table 5.8: Comparison Between Algorithms’ Performance in the Turbulence Dataset

4.4 Dynamic Background

This sequence represents scenes with strong (parasitic) background motion. In which we find
boats on shimmering water[58].

(C 1) (c2)

Figure 5.13: Test on Boats set : Frame N°2000, Real Size : 320x240 pz
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Rx-GMM

Bx-GMM

Original GMM

(+) Rol are highlighted
when they enter the scene.
(-) Detected objects have

missing parts

(+) Dynamic background

{(water) is set with minimal

noise.

(+) Far objects are detec-

ted.

(+) Rol are highlighted
when they enter.

(-) Detected objects have
lots of missing parts

(+) Dynamic background
(water) is set almost
without noise noise.

(+) Far objects are detec-

ted.

(+) Rol are highlighted
when they enter.

{+) Detected objects don’t
have missing parts

(-) Dynamic background
(water) is usually detected
as foreground.

(+) Far objects are detec-
ted.

Table 5.9: Comparison Between Algorithms’ Performance in the Boats Dataset

5 Benchmarking Results

5.1 Evaluation Metrics

After testing our two deferent GMM improvements, comparing them against other GMM

methods is a necessity. By benchmarking the methods, we can use the right metrics that
accurately measure the ability of a method to detect the right foreground and the right
background. These metrics must be obtained after testing on the same scenes or datasets.

The next steps clarify how exactly we benchmarked deferent GMM methods :

o We used the same datasets [58] [59].

¢ These datasets have, for each set, and for each input frame, a groundtruth frame that
contains precise ground truth labels for every pixel Figure 5.14 (All pixels ware manually

labeled a number of times by deferent researchers).

e Each pixel has a label that represents one of these evaluation metrics[58] :

— Static : assigned grayscale value of 0,

— Shadow : assigned grayscale value of 50,

— Non-ROI : assigned grayscale value of 85,

— Unknown : assigned grayscale value of 170,

— Moving : assigned grayscale value of 255.

e Performance of each method is obtained by calculating the next evaluation metrics

across all frames of one set[58] :

— T'P : True Positive for correct foreground detection,
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Unknown = 17@

Moving = 255

Static = @

©

Figure 5.14: Evaluation Metrics in Groundtruth Frames : (a) Input frame N°1065 (b) Its
groundtruth frame (c) Deferent groundtruth pixel labels

— TN : True Negative for correct background detection,
— F'N : False Negative for false background detection,
— FP : False Positive for false foreground detection,

— SE : Shadow Error.

o The correctness of the results is expressed by two measures(63] :

— Recall : High recall means that the method returned most of the relevant results.
It’s calculated as follow :
TP

Recal=rrp T FN (L)

— Precision : High precision means that the method returned substantially more

relevant results than irrelevant. it’s obtained as follow :

TP
Recall = 7o +p (5.2)

5.2 Results and interpretation

We have evaluated the performance of five GMM based methods : Rx-GMM (our region
based GMM), Bx-GMM (our box based GMM), The Original GMM[45], and two improved
GMMs : the improved GMM of Zivkovic et al.[64] and a block-based GMM RECTGAUSS-
tex[65].



Implementation and Tests

61

TP 5 FP FN ™
g6 £ 25 § 5 £ 7
£ = Z45 E]
=, 3 p 1165
= 116
i d - E £ 4
15 = =
g | B -k £ s
i =4 : _.é | 3 25 g 115
E £ 2 2
£ 114
= 2 z 215 2 &
. 0.5 = 1 114
2 = 05 1135
0 it 0 0
113
GMM Methods -
= Rx GMM
= Bx GMM
= GMM | Stauffer & Grimson
- GMM | Zivkovic

m GMM | RECTGAUSS-Tex

Figure 5.15: Benchmarking Resluts of GMM Methods on Office Dataset
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