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List of symbols

FODE : Fractional ordinary differential equation

FPDE : Fractional Partial differential equation

IV P : Initial value problem

BV P : Boundary value problem

I'(.) : Gamma function
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I§, : Right-fractional Riemann-Liouville integral
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£:. Denoted by
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AC (I,R) : Space of absolutely continuous functions on [
BC (R4, R) : Space of bounded continuous functions on [

L' (I,R) : space of Lebesgue integrable functions on [
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LP (I,R) : space of measurable functions u with |ul’ belongs to L' (I, R)
Lr7 (I,R) : Weighted LP — space with weighted function o

L (I,R) : space of measurable functions essentially bounded on
W™ (I,R): (m,p) — Sobolev space

Wpr (I,R) : (s,p) — Riemann-Liouville fractional Sobolev space
D' (I): Space of distributions

Vu : Gradiant of u

Auwu : Laplacian of u

Ou : Boundary of u

resp. : respectively

R — L : Riemann-Liouville

a.e. : almost everywhere

—: strongly converge to
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Abstract

The subject of fractional differential equations has gained considerable popularity
and importance during the past three decades or so, due mainly to its demonstrated
applications in numerous seemingly diverse and widespread fields of science and
engineering. It does indeed provide several potentially useful tools for solving differ-
ential and integral equations as well as their importance in the modeling of a lot of
physical phenomena associated to very rapid and very short changes.

On the other hand, existence, uniqueness and stability of solutions, represent
a large part of the qualitative theory of nonlinear ordinary and partial differential
equations of non-integer order. Where we are interested in this thesis on the discus-
sion of qualitative analysis of some kinds of fractional ordinary differential equations
and fractinal partial differential equations. To this end, we utilize the fixed point
theorems of Banach, Schauder and Krasnoselskii in Banach spaces for fractional or-
dinary differential equations as well as Rothe discretization method is used to show
the existence and uniqueness of weak solution for fractional diffusion equation of
the second-order differential Volterra operator in Hilbert space. To guarantee the
effectiveness and usefulness of our obtained results theoretically, some illustrative
examples are given.

Keywords: Fractional differential equations, fractional diffusion equation, initial

value problems, boundary value problems, unbounded interval, mixed derivatives,
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weighted Banach spaces, fractional Sobolev spaces, existence, uniqueness, stability,
weak solutions, Rothe method, discretisation scheme, Banach contraction principle,

Schauder fixed point theorem, Krasnoselskii fixed point theorem.



Résumé

Le sujet des équations différentielles fractionnaires a acquis une popularité et une
importance considérables au cours des trois derniéres décennies, principalement en
raison de ses applications démontrées dans de nombreux domaines de la science et
de l'ingénierie apparemment diversifiés. Il fournit en effet plusieurs outils poten-
tiellement utiles pour résoudre les équations différentielles et intégrales ainsi que
leur importance dans la modélisation d’un grand nombre de phénomeénes physiques

associés & des changements trés rapides et tres courts.

D’autre part, ’existence, 'unicité et la stabilité des solutions représentent une
grande partie de la théorie qualitative des équations différentielles ordinaires et parti-
elles non linéaires d’ordre non entier. Ol nous sommes intéressés dans cette thése sur
la discussion de ’analyse qualitative de quelques types des équations différentielles
ordinaires et partielles fractionnaires. A cette fin, nous utilisons les théorémes des
points fixes de Banach, Schauder et Krasnoselskii dans des espaces de Banach pour
les équations différentielles ordinaires fractionnaires ainsi que la méthode de discrét-
isation de Rothe pour montrer I'existence et I'unicité de la solution faible dans un
espace de Sobolev pour I'équation différentielle partielle de diffusion d’ordre frac-
tionnaire. Pour garantir 'efficacité et I'utilité des résultats obtenus théoriquement |,

quelques exemples illustratifs seront donnés.

Mots clés: Equations différentielles fractionnaires, équation de diffusion fraction-
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naire, problémes de valeurs initiales, problémes de valeur aux limite, intervalle non
borné, dérivations mixtes, espaces de Banach pondérés, espaces de Sobolev fraction-
naires, existence, unicité, stabilité, solution faible, méthode de Rothe, schéma de dis-
crétisation, principe de contraction de Banach, théoréeme du point fixe de Schauder,

théoréme du point fixe de Krasnoselskii.



Introduction

The theory of derivatives of non-integer order goes back to Leibniz’s note in his list to
L’Hospital, dated 30 september 1695, in which the meaning of the derivative of order
one half is discussed. Leibniz’s note led to the appearance of the theory of derivatives
and integrals of arbitrary order, which by the end of 19 century took more or less
finished form due primarily to liouville, Grunwald, Letnikov, and Riemann. For more
than two centuries, the theory of fractional derivative developed mainly as a pure
theoretical field of mathematics useful only for mathematics. However, in the last
few decades many authors pointed out that derivatives and integrals of non-integer
order are very suitable for the description of properties of various real materials. It
has been shown that new fractional order models are more adequate than previously
used integer-order models. For more details of fundamental works on various aspects
of the fractional calculus and fundamental physical considerations in favour of the
use of models based on derivatives of non-integer order we refer the monograph of
Bagley [11], Engeita [33], Hilfer [44], Khare [48], Kilbas [49], Magin [60], Mainardi
[61], Miller and Ross [64], Nishitomo [67], Oldham [69], Oldham and Spanier [70],
Petras [71], Podlubny [72], Sabatier et al. [78], and the references therein.

Fractional derivatives provide an excellent instrument for the description of memory
and hereditary properties of various materials and processes. This is the main ad-

vantage of fractional derivatives in comparison with classical integer order models, in

11
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which such effects are in fact neglected. The advantages of fractional derivatives be-
come apparent in modelling mechanical and electrcal properties of real materials, as
well as in the description rheological of rocks, and in many other fields us chemistry,
biology, engineering, viscoelasticity, signal processing, electrotechnical, electrochem-

istry and controllability, see the above mentioned references.

The main objective of the present thesis is to proved some existence and unique-
ness results for some kinds of ordinary differential equations of fractional order and
the partial differential equations which contain a fractional derivative term. We need
to this end to use various fundamental concepts of fractional calculus and fractional
derivative and its properties in order to use it in fractional differential equations and
in partial fractional differential equations. Also, some concepts of functional analysis
are presented to show these purposee. Beside, The subject of fixed point theory
become an important fild of mathematics given its great importance in the other
domains of mathematics especially in ordinary differential equations, partial differ-
ential equations, integral equations, operator theory, numerical analysis and other
mathematic areas. In our work, we will use fixed points theorems on a large scale
to show the existence, uniqueness and stability of solutions of some problems that
we will given later. For existence of solutions, we employ the Shauder fixed point
theorem, the Krasnoselskii fixed point theorem, as well as Banach contraction prin-
ciple is used for uniqueness, and too, by utilizing Krasnoselskii fixed point theorem
we discuss the stability of solutions. Some contributions around applications of fixed
point theorems in fractional differential equations to show the existence, uniqueness
and stability of solution found in [1, 5, 6, 15, 21, 23, 37, 46, 47, 51, 68| and the

references cited therin.

On the other hand, Fractional diffusion equations include the mathematical model
of large class of problems. They describe anomalous diffusion on fractal (physical
objects of fractional dimension), fractional random walk. For details, see [13, 34, 38]
and the references therein. Let us cite some interesting papers dealing with this kind
of problems. The first of them is that of Oldham et al. [70] whose studied the relation
between usual diffusion equation and a fractional diffusion equation. In [62], F.

Mainardi et al. estabilished the model of diffusion waves in viscioelasticity based on
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fractional calculus. Agarwal [3] discussed the solutions for fractional diffusion wave
equation defined in a bounded domain. El-Borai [32] investigated the fundamental
solutions of fractional evolution equations. Recently, Mophou et al. [38] considred
fractional evolution equation with fractional integral condition in Sobolev space,
where the authors assumed that the operational coefficient is the generator of a
semigroup of contractions.

Among other methods, the Rothe’s method is one of the more popular that is
commonly used in the time discretization of evolution equations where the derivatives
with respect to one variable are replaced by difference quotients that finally leads
to systems of differential equations for functions of the remaining variables. Rothe’s
method as an approximative approach is well suited not only to prove the existence
results, but also for various applications. This method was introduced by Rothe in
1930 for solving second order linear parabolic equations with one space variable( see
[77]). Later, this method was adopted by Ladyzenskaja [53, 54] to solve linear and
quasilinear parabolic problems of second order and linear equations of higher orders.
Further development is connected with Rektorys (see[74, 75]) who obtained more
smooth solutions. Recently, Rothe’s method has been devloped to cover other types
of equations as we can see in [12, 27, 28, 31, 39, 40, 52].

The scheme of the Rothe method is given as follows;

We divide the time interval into n subintervals (t;,_1,t;) ,i = 1,...,n, where t; = ih,

h =L We donote by u; = u (t;,2) = u; (z) = u (ih, ) the approximants of .

We replace the derivative (of the function u) 2¢ by du; = “=“=%, for all ¢t =
ti,i=1,...,n.

We obtain a system consisting of n equations in = where the unknown is u;(x),
so we approach the problem posed in every point by a new discrete problem.

We determine the functions u,, solutions of the obtained system.

We build the Rothe functions defined by

U(n) (t) = Uj—1 — 5“1 (t - tz) 5 t e [ti—la tz] 5 1= ]_, N

and the corresponding test functions
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U; t e ti, ,ti .
E"(t):{ (tioa, il Ji=1,...,n.
Ug t=0

Motivated and inspired by the works mentioned above on qualitative theorie of frac-
tional differential equations and as a contribution to enrich the works previously
conducted in this orientation, the main goal of this thesis is to show new results
about existence, uniqueness and stability of solutions for initial value problems and
boundary value problem for some kinds of partial and ordinary differential equa-
tions of fractional orders on bounded and on unbounded interval involving Riemann-
Liouville and Caputo fractional derivatives. The discussion of solutions will be in

some Banach spaces and Hilbert spaces that we will present it in later.
This thesis consists of four chapters.

Chapter 1 devoted to give a preface on the theory of functional spaces, special
functions, fractional derivative and fractional integral, some tools of functional ana-

lysis and fixed point theorems.

Chapter 2 is based on the submitted paper [42] and new other results on going
redaction. We give some results about uniqueness, existence, and stability of solu-
tions on unbounded interval using Krasnoselskii fixed point theorem and Banach
contraction principle in weighted Banach spaces of the following fractional initial

value problem

{ CDou(t) = f(t,u(t)) t >0,
u(0) = ug, v'(0) = uy,

and the delay fractional initial value problem

DeCD%u(t) = g(t,u(t — )] = f(t,u(t —r)),t >0,

u(t)=o(t),te[-r0,
7yr%tl_o‘ CDPu(t) = 0,4'(0) = uq.

Chapter 3 is based on the submitted paper [41]. We will interested with the study of
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the following boundary value problem of fractional differential equations of Riemann-

Liouville type

Diu(t) = g (t,u(t),Du(t)), t €1,
{ D% uly—g =0, i=1,...,n,i#n—1and u(T) =0,
we prove the existence and uniqueness of weak solution in weighted fractional Sobolev
spaces (which we will construct later) using Shauder fixed point theorem and Banach
contraction principle.
Chapter 4 is based on the published paper [26] which deals with the following
fractional diffusion equation of the second-order differential Volterra operator and

fractional integral condition

t
D% (t,z) — Au(t,z) = /a(t— s)Au(s,z)ds+ f(t,x) in I x ),
0
u(0,2) =up (z) in £,
I'u (0%) = Uy (z), in Q,

u(t,z) =0on I x 0.
The existence and uniqueness of a weak solution in an appropriate sense as well
as some regularity results are obtained by the use of Rothe’s discretization method.

Here, A is the differential operator defined by the application of the gradient operator

followed by the application of the divergence operator, that is
AD = V. (6’@) — div (gradq>)

B (a 0 a)(acb 0P aq>)T_”a2_q>

Oxy Oxy Oxy, Oxy Oxy Ox, — ox?’

)



CHAPTER 1

Preliminaries

In this chapter, we present some basic notations, definitions and properties from such
topics of analysis which are used in the other chapters as special functions, functional
spaces, fractional integral, fractional derivative, fixed point theorems etc. For more
details we refer to the monographs of Adams[2], Besov [17], Brezis [20] , Hilfer [44] ,
Kilbas [49], Kolmogorov [50], Podlubny [72], Precup [73], Renardy and Rogers [76],
Smart [79] and the book of Zeidler [82].

1.1 Functional spaces

Let Ry = [0,+00) and let J := [0,7] the compact interval of R,. we present the

following functional spaces:

Definition 1.1 Let C (J,R) is the Banach space of continuous functions v : J — R
have the valued in R, equipped with the norm

[ull = sup |u (¢)].
teJ

Analogoustly, C™ (J,R) the Banach space of functions u : J — R where u is n

time continuously differentiable on .J.

16
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Denote by L' (J,R) the Banach space of functions u Lebesgues integrables with

the norm

full: = [ Tu .
J

and we denote L? (J,R) (L (J,R) resp.) the space of Lebesgue integrable
functions on J where |u|” (o |u|” resp.) belongs to L' (J,R), endowed with the

norm

lull = / () dt,
J

lull e = / o (8) [u (D) dt. resp.

J
In particular, if p = oo, L (J,R) is the space of all functions u that are

essentially bounded on J with essential supremum
|u]| oo = esssup|u(t)| =inf {C >0: |u(t)] < C for a.e. t}.
teJ
Definition 1.3 Let €2 be a open set of R™, we difine the Sobolev space W™? (2, R)
by
WmP(Q,R) ={u e LP (Q,R): D*u € LP (Q,R) for 0 < |a] < m}

where D* is the weak (or distributional) partial derivative. W™ (Q,R) is a

Banach space equipped with the norm

3=

lall,p=| D 1Dl | if0<p<oo,
0<|a|<m
il = s (1%

In particular, if p = 2, we denote by H™ (2, R) to W™?2 (Q,R) (the space of

square-integrable functions) which is a Hilbert space with inner product
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(w,v),, = Z (D%, D),

0<|al<m

where

(u,v) = /u (t)v (t)dt

J

is the inner product in L? (Q).

Ifu=0o0n0J={0,T}, for all u € H™ (Q,R), then we write H" (2, R) instead of
H™(Q,R).

Some inequalities associated with these concepts are found in section 1.4.

Definition 1.4 A function v : J — R is said absolutly continuous on J if for all

€ > 0, thre exists a number d. > 0 such that; for all finite partition [a;, b;]’_, in

p p
J, then Z (b; — a;) < d. implies that Z lu (b;) —u(a;)| <e.

i=1 i=1

We denote by AC (J,R) (or AC* (J,R)) the space of all absolutely continuous func-
tions defined on J. It is known that AC (J,R) coincides with the space of

primitives of Lebesgue summable functions:

uEAC(J,R)<:>u(t):c+/<1>(s)ds, ® e L' (JR), (1.1)

and therefore an absolutely continuous function u has a summable derivative
u' (t) = ® (t) almost everywhere on .J. Thus (1.1) yields

u (t)=®(t) and c = u (0).

Definition 1.5 Forn € N, we denote by AC™ (J,R) the space of functions u : J — R

which have continuous derivatives up to order n — 1 on J such that w1V
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belongs to AC (J,R) :

AC"(JR) = {ueC" ' (LR):u™ Ve AC (J,R)}
= {ueC" ' (JR):u™ e L' (J,R)}.

The space AC™ (J,R) consists of those and only those functions v which can

be represented in the form

u(t) = icktk + (I @) (1), (1.2)

where ® € L' (J,R), ¢t (k=0,1,....n— 1) € R, and

t

(I2.®) (1) = ﬁ / (t— )" " ® (s) dr.

0

It follows from (1.2) that

u® (0)

D(t) =u™(t), ¢ = X

(k=0,1,...,n—1).

For more details about AC' (J,R) and AC™ (J,R) , see eg. the book of Kolmogorov
and Fomin ([50], p.338).

1.2 Special functions

We give here some information on the gamma function, beta function and Mittag-
Leffler function, which play moste important role in the theory of differentiation of
arbitrary order and in the theory of fractional differential equations. They represent

a generalizations of some usual functions.

Definition 1.6 (Gamma function):
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The gamma function I' (.) is defined by the integral

VzeR, : T'(z) = /ettZ1dt,

0

which possesses the following basic properties
2 (z)=T(2+1),
and for every integer n > 0, we have
nl=T(n+1).

Farthermore

I'(z+n)
(z+1)(z4+2)...(z+n—-1)

I'(z) = yz2>-—n,n=1,..,2#0-1,-2, ..
z

Clearly, Gamma function is analytic except for z = 0,1, 2, ... which are repres-

ent simple poles.
Definition 1.7 ( Beta function)

The beta function B (.,.) is defined for all p,q > 0 by:
1
B(p,q) = /sp_l (1—s)"""ds.
0

The functions I' (.) and B (.,.) are related by the formula

L'(p)T(q)
F'(p+q)

To prove this relationship we use the Laplace transform, see [49].

B(p,q) =
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Definition 1.8 ( Mittag-Leffler function)

For o > 0 and z € R, the one parameter Mittag-Leffler function is defined by

ad k
z
E,(2)=) ———,
(2) ZF (ak+1)
k=0
where it was introduced by Mittag-Leffler [65].

For a > 0, 8 > 0, we define the two parameter Mittag-Leffler function by

Zk

Eop(2) = Zm,

)
k=0

in particular,
Eq11(2) =€ and Es; (2) = cosh (v/z),

and
E,i1(2) =E,(2).

1.3 Fractional integrales and derivatives

In this section, some approaches to the generalization of the notion of differentiation

and integration are considered (see for instence [44, 49, 64, 72]).

Definition 1.9 (Grunwald-Letnikov fractional derivative)

The Grunwald-Letnikov fractional derivative of the function u of order o > 0 is

defined by
1 [(t—a)/h] .
GL na _ 1 . _ o3 _
Diu(t) = lim ]; (1) (CRf (t = kh)).

Definition 1.10 (Cauchy formula)
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The Cauchy formula of nth integral of a locally integrable function v on R is given

by

t

! )'/(t—s)"_lu(s) ds,

Mu(t) = (n—1)!

0

Definition 1.11 (Riemann-Liouville fractional integral)

The right-side(left-side resp.) Riemann-Liouville fractional integral of the function
u € L'[0,T] of order > 0 is defined by

t

I8 (t) = ﬁ / (t— )" u(s)ds,

resp., where ¢t € [0,77].

Riemann-Liouville fractional derivative are defined depending on their fractional

integral and integer order derivative as follows.
Definition 1.12 (Riemann-Liouville fractional derivative)
The right-side(left-side resp.) Riemann-Liouville fractional derivative of the func-

tion u of order a € (n — 1,n] is given by

t

BD () = e () = i () - ueas

0
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T

gt = (—5) ) = gt (<) [e- 0w

t

resp.
Definition 1.13 (Caputo fractional derivative)

The left-side(right-side resp.) Caputo fractional derivatives of the function u €
AC™[0,T] of order « € (n — 1,n] is defined by

“Dgu () = I [u ()] = oo [ (=) (s
“Dj () = [ [ ()] = oy [ (5= (9

resp.

Remark 1.1 Fractional integrals and fractional derivatives can themselves be ex-

tended from the case of a finite interval to the case of half-axes or axes.

Let’s now consider some properties of the Riemann-Liouville and Caputo frac-
tional integral and derivatives. In particular, we are interested by the left-side frac-
tional derivatives and integrals. Farthermore, we denote in the rest of this thesis

only by I*, D*° D* instead I§, ,** Dg, and “Dg, resp.
Lemma 1.1 ( Relation between R-L and Caputo derivatives)

Let n — 1 < o < n. If the function u € C™ [0, T, then
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Lemma 1.2 (Linearity and monotony)

o Fractional operators I®, D® and “ D are linears.

o Operator I* is monotone.
Lemma 1.3 (Boundness of fractional integral)

Fractional operator I* is bounded on L? (0,T), that is

TOZ

I« <K K=_——.
Ireull, < Kl K = 5o

Lemma 1.4 For o, 3 > 0 and u € L' ([a,b]), we have

I°1%u (t) = I°P1%(t) = I°Pu (1),
DI%u(t) = wu(t),
Deru(t) = wu(t),

also, for « > 3 > 0 and u € L' ([a, b]), we have

DP I (t) = I°7Pu(t).

Lemma 1.5 (examples of fractional integral and derivative for power functions, see
eg.[49])

Ifa>0,8>0, then
_ I'(5) _
o7t = 2 _¢ftesl 50,
T(3+a) “

LB)  oa-
mt 1, o> O,

C nayf—1 __ F(B) B—
Dt 1——F(ﬁ_a)t L3> o],

D =



25
Lemma 1.6 Let u € L' (a,b) and n — 1 < @ < n with D*u € L' (a,b), then
I°Du () = u (t)+crt® egt® 2 egt® P+ 4, t*™, for ¢; € R,i = 1,2,...,n,
Lemma 1.7 Let u € AC" ! ([a,b]) and n — 1 < a < n with D% € L' (a,b), then
I°Du(t) =u(t) +co+eit+ oo+ cuat"™, €RI=0,2,....n—1,

where n = [a] + 1, [a] denotes the integer part of «.

Definition 1.14 The Laplace transform of a function ® of a real variable t € R, is
defined by

(LD) (s) = / D (1) dt, (s € C).

Definition 1.15 The inverse Laplace transform is given for x € R, by the formula

The direct and inverse Laplace transforms are inverse to each other

LD =] and LL 'g=g.

Lemma 1.8 Let «, 3 > 0. The Laplace transform of the Riemann-Liouville frac-

tional derivative D*u (t) and the power function ¢ — t# are given respectively
by

(i) L{Du(t),z} = 2°U (2 Zz (DY (£)],_y »
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(it) L{t°, 2} =T (B+ 1)z~ B+,
where U (z) denotes the Laplace transforme of u (¢). n = [a] + 1.

More details for Laplace transform and its applications in fractional calculus

theory can be obtained in [72].

1.4 Functional tools

Some useful concepts of functional analysis are presented below:

Definition 1.16 ® : J x F — FE is called a Carathéodory function if
i t+—— ®(t,u) is measurable for every u € E,
ii u—— ®(t,u) is continuous for almost everywhere t € J.

Definition 1.17 Let I be a measurable subset of R, g : J x R — R be a function
satisfies the condition of Carathéodory. By a Nemytskii operator we mean the

mapping N, taking a function u to the function
Ngu(t) = g(t,u(t)),t € Jyu e R.

The continuity of the operator N, is concerned in the following Lemma.

Lemma 1.9 Let J be a measurable subset of R, g : J xR — R to be a Carathéodory
function. Let u € LP(J), p € [1,00). If there exist a function b € L™ (J),r €

[1,00), and a constant ¢ > 0 such that
lg (t,u)| <b(t) +clu|” ,aet € JueR,
then the Nemytskii operator

Ngu(t) = f (t,u(t)),
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is continuous and bounded from L? (J) to L" (J), that is
D
HNguHLr(J) < HbHLr(J) t+c HUHIT,P(J) .

Here, we say that the g is (p,r) —Carathéodory. For more details about Ne-

mytski operator and its properties, we refer, eg. to [73].

This result can be easily carried over to vector functions u = (uyq, ..., ug) with com-

ponents u; € L, and to functions f : J X R? — R. In this case, we have(see

[17])
lg (t,u)] < b(t —i—czmj\ ,a.et € Ju € R

Notation : We set (7,f) (z) = f(x + h).
Lemma 1.10 (Compactness Criteria in LP)

Let €2 be a bounded domain in R"™. A set F of functions f € L? (Q) (1 < p < o0) has

a compact closure in L? () if and only if there is equicontinuous, i.e.

lim |7, = f[], =

|h|—0
uniformly in f € F.
For more details see [2, 20, 66].
Definition 1.18 (Weak convergence)

Let E be a Banach space, a sequence u, in E converges weakly to u if f (u,)
converges to f (u) for every f € E*. A sequence f in E* converges weakly—sx

to fif f,(u) converges to f(u) for every u € E.

To distinguish notations, one writes u,, — u for convergence in norm, u,, — u

*
for weak convergence, and u,, — u for weak—* convergence.

Theorem 1.1 (Weak compactness, [76])
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Let E be a separable Banach space and let f,, be a bounded sequence in E*. Then

fn has a weakly—* convergent subsequence.
Theorem 1.2 (Minty-Browder, [35])

Let © be a bounded domain in R and f : (0,7) x Q2 — R be monotone in the

second variable, i.e.

(f(t,u) — f(t,v),u—v) >0 for u,v € Q,

and
u, — u weakly in LP (2),
d(t,z,u,) — x weakly in L7 (),
lim sup/d (t, 2, up) updr < /Xudac.
T Q
Then
X =d(t,z,u).

Lemma 1.11 (Holder’s inequality)

Let 1 < p < oo and let p’ denote the conjugate exponent defined by

) 1 1
p =—— thatis -+ —-=1.
p—1 p P
If ue L7 (J,R) andvGLPI(J,R),thenquLl(J,R),and

[ uv@de <, ol

Lemma 1.12 (Minkowski’s Inequality)
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If1 <p< oo, then
lu+vll, < flull, + o],

Lemma 1.13 (Cauchy-Schwartz inequality)

Let u,v belong to L? (I) equipped with the inner product (.,.) and the norm ||.||,,
then

(u, 0) < lully vl -
Lemma 1.14 (e—Young’s inequality)
Let a,b > 0, then for all ¢ > 0, we have

1
2ab < ea® + —b°.
€

Lemma 1.15 (Poincaré’s Inequality)

For all u € H} (J,R), there exists a constant C'; (depending on J) such that

[ull, < Cs ([ Vull, -

Lemma 1.16 (Green formula)

Ifue H*(J) and v € H' (J), we have
[ @ngtr == [Vivais+ [V
J J aJ
Lemma 1.17 (Discrete Gronwall Lemma)

Let (uy), (fn) and (g,) are nonnegative sequences and

Uy < fr + nguk for n >0,
0<k<n
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then

Up < fn + Z frgrexp ( Z gj) for n > 0.

0<k<n k<j<n

1.5 Fixed point theorems

In the following, we are interested by giving some fixed point theorems with related

notions:

Definition 1.19 For a mapping A from a set E into itself, an element u of F is a
fixed point of A if A(u) = u.

Definition 1.20 Let £ be a Banach space with a norm ||.||. A mapping A: £ — E
is called ®—Lipschitzian, if there exists a continuous nondecreasing function

¢ : R, — R, satisfying
[Au — Avl] < @ ([ju = vl]),

for all u,v € E with ® (0) = 0. The function ® is sometimes called a ®—function
of Aon E.

In particular:

oIf ®(r) = kr for some k > 0, A is a Lipschitz mapping with a Lipschitzian
constant k(k-Lipschitzian). In this case if £ < 1 then A is called a contraction

mapping with a contraction constant k.
oIf ®(r) <r, Ais called a nonlinear contraction mapping (®—contraction).

Definition 1.21 [30]A function f : [a,b] x R — R is said to be generalized Lipshitz,

if there exists a positive function ®, such that

|f (tu) = f (£ 0)] < @) Ju—vf,

for all t € [a,b],u,v € R. ® is called the Lipschitz function of f.
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Definition 1.22 Let F and F two Banach spaces and A be an application defined
on E in F. We say that A is completely continuous if it is continuous and
transforms any bounded of E into a relatively compact set in F'. A is called

compact if A(FE) is relatively compact in F'.
Lemma 1.17 [82](Ascoli-Arzela Theorem)

Let €2 be a bounded subset of R™. Let M a subset of C' (ﬁ) the space of continuous

functions on Q, Then M is relatively compact if and only if
o M is unifomely bounded, i.e. ||u]] < ¢, for all u € M and ¢ > 0 is a fixed number.

o M is equicontinuous, i.e.
Ve > 0,36 > 0, if )t—t/’ <dandue M= ‘u(t)—u(tlﬂ < e.

We present now, a more generally version of Ascoli-Arzela Theorem in the case
when the set () is unbounded.

Definition 1.23 Let A : R, — [1,+00) be a strictly increasing continuous function
with
h(0) =1, h(t) — co ast — oo, h(s)h(t —s) < h(t),

for all 0 < s <t < oo. We introduce the space

E:{UGC[O,+OO):sth%<OO},

which is a Banach space equipped with the norm ||u|| = Stl>lg %3‘ . For more properties
of this Banach space, see [23, 51]. B
In order to prove the compactness in F, we give the following modified compact-

ness criterion.

Lemma 1.18 [51|Let M be a subset of the Banach space E. Then M is relatively

compact in F if the following conditions are satisfied:
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i) {%:u € M} is uniformly bounded;
ii) {% tu € ./\/l} is equicontinuous on any compact interval of R, ;

iii) {% tu € /\/l} is equiconvergent at infinity. i.e. for any given € > 0, there exists
a Ty > 0 such that for all u € M and tq,ty > T, it holds

Theorem 1.2 (Banach contraction principle [79, 82])

Let E be a Banach space. If A: E — F is a contraction, then A has a unique fixed
point in F.

Theorem 1.3 (Schauder’s fixed point theorem [79, 82])

Let M be a closed convex subset of a Banach space E. If A : M — M is continuous

and the set A(M) is compact, then A has a fixed point in M.
Theorem 1.4 (Krasnoselskii fixed point theorem [79, 82])

If M is a nonempty bounded; closed and convex subset of a Banach space F, A

and B two operators defined on M with values in F such as:
i) Au+ Bv € M, for all u,v € M.
ii) A is continuous and compact,
iii) B is a contraction,

then there exists w € M such as: w = Aw + Bw.



CHAPTER 2
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2.1 FODE with initial conditions

2.1.1 Position of problem

Recently, the study of fractional differential equations on infinite domain has begun
to emerge and evolve extentively. The interest of authors in this study is mainly
due to the excitement inspired by the adoption of unusual Banach spaces as well as
some other concepts which have been extended to the case of unbounded interval as
compactness criteria and others, we refer for example to the papers [18, 36, 58, 83]
and the references therein.

Based on these papers and others, we are interested in this subsection in the study
of the existence and uniqueness for the following inital value problem of nonlinear

fractional differential equations

“Du(t) = f(t,u(t)), t>0, (2.1)
u(0) = wup, v'(0) = uy, (2.2)

where 1 < a < 2, ug,u; € R, Ry = [0,400), f : RT x R — R is a continuous
function, ©D® is the standard Caputo fractional derivative.

We will mainly discuss the existence and uniqueness of the nonlinear FDE of
order a(1 < a < 2) given by equations (2.1) and (2.2). For satisfy this aim, we
first transform the fractional differential equation into a first-order ordinary differ-
ential equation with a fractional integral perturbation, then by using the means of
the variation of constants formula and some analytical skills, we obtain the equival-
ent integral equations of (2.1)-(2.2). Furthermore, we investigate the existence and

uniqueness of nonlinear FDEs (2.1)-(2.2) by using the contraction mapping principle.

2.1.2 Corresponding integral equation

In the following, we give the integral equation coresponding to the FODE (2.1)-(2.2)
using the concepts of fractional calculus given in Chapter one. We start by defining

the following Banach space:
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Let h: Ry — [1,400) be a strictly increasing continuous function with
h(0) =1, h(t) — oo as t — oo, h(s)h(t —s) < h(t),

forall 0 < s <t <. Let

t
E= {u(t) € C[0,+00) : supM < oo} .
>0 h(t)
Then E is a Banach space equipped with the norm |ju|| = sup‘;ig'. For more prop-
>0

erties of this Banach space, see [23].

Lemma 2.1 Let y € C'[0,+00). Then u is a solution of the Cauchy type problem

{ CDuy(t) = y(t), tER,, 1 <a <2, 23)

u(0) = ug, v'(0) = uy,
if and only if u is a solution of the Cauchy type problem

{ u'(t) Z(é‘;‘:lyiz) + g, (2.4)

Proof. (i) Let u € C'[0,+00) be a solution of the problem (2.3).

For any t € R, we have
“Du(t) = (“D*'D'u) (t) = y(t).
According to Lemma 1.7, we have
w'(t) =c+ 1" y(t) = 17Ty (t) + u,

which means that u is a solution of the problem (2.4).
(77) Let u be a solution of the problem (2.4).
For any t € R, , it is easy to see that



36 2.1. FODE with initial conditions

“Du(t) =C D* '/ (t) = (DY) (1) +9 Dy = y(t).
Besides, note that y € C'[0,+00), we have uv'(0) = [*1y(0) + u; =u; =
Lemma 2.1.2 shows that the system (2.1)-(2.2) is equivalent to the system

t
1

u'(t) = Ta=1D) /(t —8)* 72 f(s,u(s))ds + uy, (2.5)

u(0) = wup.
Lemma 2.2 Let k& € R satisfies that
e_kt/h(t) e C[0,400) N Lt [0, +00) . (2.6)

Then (2.5) can be equivalently written as

t

T —k(t—7)
u(t) = wee ™+ ’ ur+k [e Tu(T)dr (2.7)
0
. tot
—k(t—s) (o \o—2
+—F(a—1) //e (s —1)* “dsf(r,u(r))dr.
0 7

Proof. It is clear that (2.5) can be written as follow

t

/(t —5)* 2 f(s,u(s))ds + uq, (2.8)

0

1

u'(t) + ku(t) = ku(t) + m

u(0) = wup.

By the variation of constants formula, we have

u(t) = uge™
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t

+ekt/ ku(s) (o — 1 / s — 1) f(r,u(r))dr +uy | e*ds

0 0
t
= er_kt—i-e_kt/ku(s)eksds

t

t s
1 . o
_|_F(a — 1) //ek(tS) (8 . 7_) 2f(7',U(T))deT+U1€ kt/ek ds

0 0 0
t

= uoe_kt—i-k:/e_k(t_s)u(s)dg

0
t

t s
1
+F(a — 1) //ek(tS) (S o T)Q—Q f(T,U(T))deT +ulekt/eksd8
0 0

0
SO
t
1—e ¥
ut) = woe ™+ ———u +k / e Ft=y(r)dr
0

1 t t
CE / / e M (s = 1) dsf (7, u(r))dr.

0 7

Conversely, it is clear that

(eFu(t)) = (u'(t) + ku(t)) ™,

using this fact we get

t

uy + k/e’”u(T)dT

0

(u'(t) + ku(t)) e = |ug + r ol
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/

!

+F6LTxXZQM@TW2@ﬂﬂuﬁ»m

= 6ktu1 + /{:ektu(t) + 6k71a71f<7—7 U<T))dT
/
= M (un + I u(t)) + hu(t)

Farthermore, if (2.7) holds, we have u(0) = ug.
From the argument above, we get that the system (2.1)-(2.2) can be equivalently
written as (2.7). Then our following study will focus on the integral equation (2.7)

2.1.3 Uniqueness and existence result
Our result based on the Banach contraction principle (Theorem 1.2). We define the
nonlinear operator A : E — FE by

t

uy + k/@k(tT)u(T>dT
0

—kt

k

Au(t) = uge ™™ +

; t te_k:(t_S)S_Ta_z stlr.wlr)dr
+N@—D!/‘ (s = 7)*dsf (7, u(7))dr, (2.9)

forallt € R, and k € R.

We shall investigate the existence and uniqueness of fixed point of the operator

A.

Theorem 2.1 Assume that (2.6) holds and

(H1) There exists a constant [ > 0 and a bounded function ® : [0, c0) — [0, 00) so
that if |u|,|v| <[ then



[f(t,u) = [t 0)] < @ () [u—v],

for all £ € Ry, and

(77) There exists a constant ¢ € (0,1) which satisfies

K t—T

|k:| —dt+sup (r)dr <c
20 J t—T
where
1 t _k(t—s a—
K(t—r1)= Moy Jr e T s =) s, 2T
0, t<r

Then the system (2.1)-(2.2) has a unique solution.

Proof. We claim that A : E — FE is a contraction mapping.

Let u,v € E, t > 0 and from (2.10), on gets

Au(t)  Av(t)
() h(t) ‘
! efk(tf‘r)
- k;/w[um—u(r)w
/ BUZT) (i u(r) = (o) dr

D Ju(r) — o(7)]
= ‘k|/ h(t — 1) h(T) dr

K (t=7) |f(r,u(r)) = f(r,0(D)]
h(t —7) h(7)
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(2.10)

(2.11)

(2.12)
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then
[Au — Av|| < cllu — v,

follows from (2.6) and (2.11). So, A is a contraction mapping from £ into E.
Hence, using the contraction principle mapping and from Theorem 2.1, the op-
erator A given by (2.9) has a unique fixed point. Then, the system (2.1)-(2.2) has a

unique solution m

2.1.4 An example

Let us consider the following nonlinear fractional initial value problem

eprt

CD3u(t) = w(t) (Hautsinu) ¢ > (2.13)
u(0) =up € R,/ (0) = u; € R, '
F(t) =w(t) (Hentsn) o (t) = e2 Ly, p> 0,0 > —1. Let A> 1,k € R, h(t) =
and suppose that 0 < |k| < 251, clearly that (2.6) holds and |k| [;* h(; < JE ‘

then the Banach space is
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Ey\ = {u(t) € C'[0,400) : sup |u(t)| /eM < oo} :

t>0

Ol Clearly

equipped with the norm ||u| = sup,>, =
[f (tu) = f o) <@ () |u— o,

where @ (t) = (1 + o) w (t) for all £ > 0. Morover

- cOTR)(t—s)  oA(5-7)

Kt-7) 1 [ 1 (s—7)"
AT T T(1/2) / ds

t (s—7)" /2 t—1 7—1/2
f eA(s—T) ds _ f Te)\T dT

T — JO

=T/ T(1/2)

for all t > 0. Also, if we choose p > (1 + a) A7 (A + k) then for all t > 0 we get

< AV2

K(t—r)
O (7)d
W) A
t t 1
= (1—|—a))\1/2p_1/2/6+72d7:(1—|—04))\1/2p_3/2/—1 sdT
0 o 1+ (767>

d 1
= (1+a)A/?pt / : (14 a) A\Y?p~tarctan <t67>
0

_ 1 k|
< (1 A2 Te = - M
s (1+a) 2—2(>\+k)< A+ k

A‘_]ﬂk + (A+k) < 1 which satisfies ||Au — Av| < ¢||lu —v]|. So,

the system 2.13 has a unique solution follows from Theorem 2.1.

Then there exists ¢ =
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2.2 Delay FODE with mixed derivatives

2.2.1 Previous works, Position of problem

To the best of our knowledge, the use of mixed fractional derivative in fractional dif-
ferential equations with delay is still not sufficiently generalized as the other import-
ant kinds of fractional differential equations, where we will interest in this subsection
to study this type of fractional differential equations. Beside, delay fractional differ-
ential equations have been studied extensively in the last decades and by different
methods as fixed point theorems, upper and lower solution method, spectral theory
and others. For some recent contributions in fractional boundary value problems of
fractional differential equations with delay, we can see the papers of Benchohra et
al. [15], Agarwal [4], Nouri [68], Bachir et al. [6] and the references therein.

In 2008, Benchohra et al. [15], investigated the existence of solutions for the
following Riemann-Liouville fractional order functional differential equations with
infinite delay using the Leray-Schauder fixed point theorem.

Da[u(t) _g<t7u(t_r))] = f(tau(t o T)),t cJ= [OaTLO <a< 17
u(t)y=o(t); t € [—o00,0].

Agarwal et al. [4], studied the initial value problem of fractional neutral Caputo

fractional derivative

“Du(t) —glt,u(t—r))] = ft,u(t —r)),te J=1[0,T],0<a <1,
u(t)=o e B,
and established the existence results of solution of this problem by using Krasnosel-
skii’s fixed point theorem.

Nouri et al. [68], by utilizing the Banach fixed point theorem and Krasnosel-

skii’s fixed point theorem, discussed the existence and uniqueness of solutions to the
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following semilinear Caputo type neutral fractional differential equations

“Du(t) — g(tu(t—r)] = f(tu(t —r), Ku(t)),t € J=[0,T],

u(t)=o € B,
where 0 < a < 1.

Farthermore, there are some works about delay fractional differential equations
with sequential fractional derivative. In [6], Bashir et al. studied the qualitative

theory of the following boundary value problem

D (DPu(t) — g (b u(t = 1)) = F(t.u(t 1), € [1,)]
u(t) =o(t), te[l—r1],
Dfu(1) =n R,

where D*, DP are the Caputo-Hadamard fractional derivatives, 0 < «, 8 < 1.

On the other hand, in 2017, Guezane-Lakoud et al. [55], studied the following

mixed fractional boundary value problem
~CDY DPou(t) + f(t,u(t) =0, tel0,1],
u(0) = u'(0) = u (1) =0,

where 0 < a < 1,1 < 8 < 2° D{_ denotes the right Caputo derivative and Dg+

denotes the left Riemann-Liouville.

For stability of fractional differential equations, Ge and Kou [36], by utilizing the
Krasnoselskii’s fixed point theorem, discussed the stability and assymptotic stability

of zero solution to the following Caputo type fractional differential equations

CDut) = f(t,u(t),t>0,1<a <2

!

u (0) = ug,u (0) = uy.
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Farthermore, In [18], Boulares et al. discussed the stability and assymptotic stability

of of zero solution of the following boundary value problem with delay
CDu(t) = f(tu(t), (¢ — 7 (£)) +€ DO g(tu(t — 1 (1)), ¢ > 0,
u(t) = ®(t), t€my,0,u (0)=u. 1<a<?2

Motivated and inspired by the works above and the papers ([37], [57] , [59]) and the
references therein, we give sufficient conditions to investigate the stability of trivial
solution for the following IVP of mixed Riemann-Liouville and Caputo fractional

differential equation with delay on undounded interval

D[ DPu(t) — gt u(t —r))] = f(t,u(t —r)),t >0,

u(t)=®(t),te[-r0 (2.14)
li_r)%tl_a CDPu(t) = 0,u'(0) = uo,

where D¢ D? are the left Riemann Liouville and left Caputo fractional derivatives
respectively, 0 < a < 1,1 < <2, f,g: Ry xR — R are given continuous functions
with f(¢,0) = ¢(t,0) =0, ® € C([—r,0],R) is continuous function.

2.2.2 Study space, integral equation

In this subsection, we present a suitable Banach space for investigate in which the
qualitative theory of problem (2.14), then we transforme it in a fixed point problem
to show the required end.

Let C) be the Banach space of all continuous functions defined on [—r, +00) with

the norm
Jul[x = sup {e™ |u(t)|},
t>—r

for all positive real number A > 1.

Lemma 2.3 Problem (2.14) is equivalent to the following Caputo type fractional



45
differential equation with delay

CDPu(t) = I°f(t,u(t — 7))+ g(t,u(t—r)),t >0,
u(t)=®(t),te|-r0), (2.15)
u (0) = ug

Proof. The first equation of (2.14) can be written as
“DPu(t)=I"ft,u(t— 7))+ g(t,u(t — 7)) + cot* ",

using condition Pr%tl*a “DPu(t) = 0, we get ¢g = 0. Then we obtain the required

result m

Lemma 2.4 Let f, g are continuous functions. Then wu is a solution of the problem

(2.15) if and only if u is a solution of the delay Cauchy type problem

w (t) = I8V (tu (t — 7))+ I° Vgt u (t — 1)) 4 ug, t >0,
(2.16)
u(t)=2(t),te[-r0].

Proof. Let u € C'[—r,+00) be a solution of the problem (2.15), for any ¢ > 0
and for € (1, 2], we have

“DPu(t) = (D 'D') (t) = I*f(t,u(t — 1)) + g(t,u(t —1)).
It is obvious that
() = IP7H I f(tu(t—7r)) + g(t,u (t —7))] + uo,

due to the condition u (0) = u,
which means that v is a solution of the problem (2.16).

Conversly, let u be a solution of the problem (2.16).
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Also, for any ¢ > 0, it is easy to see that

“DPu(t) = D N/(¢)
= DI (bt — 1) + TP gt u (t — 1)) +€ D g
= I°f(tu(t—r)) +gtu(t—r)),

Also, we have u/(0) = uy m

Lemma 2.5 Let k € R\ {0} satisfies that |k| < 251, clearly: A+ k > 0. Then (2.16)

can be equivalently written as

. e =) (¢ — VP2 gs f(r u(r — 1r))dT
) [ e st - )

—1 e k=) (s — V2 dsq(r. u(r — r))dr
i/ [ = P st =i @an)

Proof. It is clear that (2.16) can be written as follow
( ¢
uw'(t) 4+ ku(t) = ku(t) + M/(t —5) B2 f(s,u(s —1))ds

0
t

+F(ﬁ11)/(t —5)77%g(s, u(s — r))ds + uo,

(u(t)=(t),te[-7,0].
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By the variation of constants formula, we have

u(t) = ®(0)e ™ fe M

< [ {kuto) + = [ =t =

0
0

s

1 s — 1) 2g(r,u(t — 7))dr +ug | eds
+ s = T Rl = e o | s

0
t

= d(0)e M+ k/e_k(t_s)u(s)ds

0

- e k=) (¢ — VP2 gs (7 u(r — 1r))dT
g o = st = )
0 7

t ot
+—1 //e‘k(t_s) (s — 7')ﬁ72 dsg(T,u(t —r))dT + 1= 6_ktu
T'(3—1) ’ Eo
0 7

Farthermore, it is clear that
(Mu(t)) = (/(t) + ku(t)) e,

using this fact, we get
(u'(t) + ku(t)) e
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= ()+k‘/ u(s)ds + &+ﬂ_1// (s — 1) 2dsf (T, u(t —r))dT

0

T // (s — 7)P2dsg(r, u(r — r))dr +

t t
= eMug + keMu(t) + /e’”]a*ﬁlf(ﬂ u(r —r))dr + /e"”[ﬁlg(r, u(T))dT

= (o + I (tult — 1)) + TP g(t ult — 7)) + ku(t)

ekt — 1

Uo

this means that
u'(t) = 1P f(tu(t — ) + TP Vgt u(t — 7)) + ug.

On the other hand, if (2.17) holds, we have u(0) = ® (0).
From the argument above, we get that the system (2.16) can be equivalently
written as (2.17) m

2.2.3 Stability of solutions

The following definition is needed.

Definition 2.1 The trivial solution u = 0 of (2.14) is said to be stable in Banach
space C), if for every € > 0, there exists a 0 = §(¢) > 0 such that |®(t)|+]|ug| <
implies that the solution u(t) = wu(t, ®,ug) exists for all t € [—r,+o00) and

satisfies ||z|| <.

Let us assume the following hypotheses:

(H2) f,g: 1 x C. — R are continuous functions.
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(H3) There exists a constant [ > 0 and a bounded continuous function 7 (t) > 0
so that if |u|, |v| < then

l9(t,uw) = g(t,v)] <0 (t)[u—wv], fort € Ry.

(H4) There exist a constant v > 0 and tow continuous functions ¢ : R, — Ry, ¥ :
(0,7] — Ry such that

f (8, )] < M ()W (Jul),

holds for all ¢ > 0, 0 < |u| < 7, where ¥ is bounded nondecreasing function and
¢ €L ([0,00)).

Now, we present the stability of trivial solution of system (2.14).

Theorem 2.2 Assume that (H2) — (H4) hold. Then the trivial solution v = 0
of (2.14) is stable in Banach space C), provided that there exists constants
M, My > 0 such that

t

VU (2) sup/e_’\(t_T)lC (t —7)C(7)dr < 2zMy, for all z € (0,7], and (2.18)

>0
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and
( t

F(ﬁl_l)/e_k(t_s)(s — 1) 2ds, ift—71>0,

T

0, ift—7 <0,

\

Proof. For any given ¢ > 0, we first prove the existence of 4 > 0 such that
|D(t)] + |uop| < 0 implies ||ul| < e.

Let 0 <6 < Ik‘l% [(1 — M, — M, — %) e]. Consider the non-empty closed convex

subset B, = {u € C\([-r,+0),R) : sup |u(t)| < € for t > —r and u(t) = ®(¢t) if
t>—r
t € [-r,0]} for any € > 0. We define two mapping A, B : B, — C\([-r, +<],R) by:

(

0, it t e[~ 0],
Ault) = k/e_k(t_s)u(s)ds + /IC (t—7) f(r,u(r —r))dr iftel, (2.20
L o 0
(a(1), it t € [~ 0],
Bu = t 2.21
) P (0) ekt+1_eTktu0+/H (t —w)g(r,u(r —r))dr iftel. (2.21)
\ 0

Clearly, for u € B, both Au and Bu are continuous functions on [—r, +00). Also,

for u € B, for any t > 0, we have

e | Au(t)

< k| e”/e’“(ts) lu(s)| ds + /e’\t K@t —71)||f(r,u(r —r))|dr

0 0
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IN

t
|k’| /e—(/\—i-k)(t—s) |€_A5u(3)| ds

—i—/e’\(tT) |IC(t—T)|C(T)\If( —Ar=r) |u(7'—7’)\)d7'

0

[e'e) t
< k] lull, / e~ OFhIs s | / N K (= 1) ¢ ()T (e Julr — 1)) dr
0 0
(Y e e (2.22)
- A+ k ’
e |Bu(t)|

t

oy oM 4 o) N B B
< |®(0)]e + 7 lugl + [ e H (t —u) g(7,u(r —r))dr

0
t

| | “At—T —AT
< @)+ 258+ [N =)0 () e u()] dr
< |<I>(0)|+2’|1j€°||+ /e—“t‘”H(t—u)nde lll

0
|uo]
||
Then AB. C C'\ and BB, C C,. Now we shall to prove that there exists at least one
fixed point of the operator A + B. To this end, we divide the proof into three claims.

<@ (0)] + 277

+ Mye < oo. (2.23)

Claim 1: we show that Au + Bv € B, for all u,v € B,, from (2.22) and (2.23),

we get
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k| + 2
k|

this means that Au + Bv € B, for all u,v € B,.

k
) + <M1 + M2 + L) € S €, (224)

| Au + Bull, < T

Claim 2: Obviously, A is continuous operator on C), it remains to prove that
AB, is relatively compact in Cy. In fact, from (2.24), we get that {e *u(t) : u € B.}

is uniformly bounded in C\. Moreover, for ¢ > 7, we have

0 < lime M IE(t—71)

T t—oo
t

< tliglom/ [e*(AJrk)(t—s)] [6*)\(8*7')(8 _ T)a+ﬁ—2} ds
ti’r
= G +16 —1) / [e-OHDUmT] [ehesa 2] ds = 0 (2.25)

0

A

Together with the continuity of functions K and ¢ — e~ we get that there exists

a constant M3 > 0 such that
e MK (t—7)| < M.
Also, for any fixed Ty > 0 and any ¢1,ts € [0,Tp], 11 < t, we have

|e_’\t2Au (ty) — e Au (tl)’

to t1
= k/e_me_k(”_s)u(s)ds — k:/e_’\tle_k(tl_s)u(s)ds

0 0
t2

+ /e)‘tQIC (to —7) f(r,u(t —7))dr

0
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— /e_MIIC (ty —7) f(r,u(t —r))dr

0
t1

‘k| / ‘e—)\tge—k(tz—s) . 6—)\t16—k(t1—s)‘ |u(5)| ds

tlo
+ / €K (b — 1) — e K (81— )| If (7,ulr — 1)) dr
0

to )
+ |k /e‘Ath_k(tQ_s) lu(s)|ds + /e‘AtQIC (to — 1) |f (T, u(r —7))|dr

t1

t1
t1
|]€| / ’6—(>\+k)(t2—s) . 6—(>\+k)(t1—s)| |€_>\SU(8){ ds
0

t1
+/ ‘e”\tQIC (ty — 7) — e MK (t; — T)| ¢ (T) U (e”\(T’T) |u(r — r)|) dr
0

—I—/e_’\t21C (ty — 1) eNC (1) W (G_A(T_T) lu(r — 7“)|) dr

t1
to

+ |k| /e_(Hk’)(tz_s) }e_)‘su(s)| ds

t1

R |k| —(\tR)t —(A k)t
ek ‘ )

t1
+ |e*’\(t2*T)lC (te —7) — e Mu-T e (t1 — 7')‘ C(r)dr

0
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+M3/((7)d7  (e)

t1
— 0 as tg —>t1,

this means that {e_”u(t) tu € BE} is equicontinuous on any compact interval of R,

it remains to show that the set {e‘”

Atk
6Jk]

) 7<<r>dr <2

(t) : uw € B} is equiconvergent at infinity. In

fact, for any €; > 0 such that ¢ < €1, there exists a L > 0 such that

According to (2.25), we get

lim sup e MK (t—7) =0.
t—0r¢0,L]

Then, there exists T' > L such that for every t;,t; > T', we have

sup |e_kt21C (ty —7) e —e MK (t —7) eAT}

T7€[0,L]
< sup eI (G —7)| 4+ sup [e MK (4 — 1)
7€[0,L] T€[0,L]

<3| /<

Farthermore, for t > s, one gets

lim e~ M=) — 0

t—o0



then for t1,19 > T, we have

sup |67(A+k)(t275) _ 67()\+k)(t175)}

s€[0,L]

< sup !e*”k)(trs) + sup }e’(’\%)(tl’s)‘ < %(e\k\L)_l.

se[0,L] s€(0,L]
Therefore, for t1,t9 > T, we have

le 2 Au () — e M Au (ty)|

to t1
= k/e)‘thk(tQS)u(s)ds — k/e)‘tlek(tls)u(s)ds

0 0
to t1

+ /e’\tle (to —7) f(m,u(t —r))dr — /e)‘tllC (ty —7) f(r,u(t —7r))dr

0

0
L oo

e |k| / e OR8] _ o= (HRB=9)| g 4 2¢ || /e_(Hk)Sds
0

<
0
—i—\I/(e)Mg/C(T)dT—i-‘I/(E)Mg/C(T)dT
L L
L
+W () / |e*)‘(t2*T)IC (te —7) — e Mu-TKC (t; — 7')‘ ¢ (r)dr
0
< %-i- iikl{[ +2\I’(6)M3/C(T)d7'—l—% <e,

L

this achieves the proof.

55
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Claim 3: We show that B : B, — (', is a contraction mapping.
In fact, for any u,v € B,, using (H2), we have

supe M |Bu(t) — Bu(t)]
>0

(¢

- / e MH (t— 1) |g(r,u(t — 1)) — g (1,0(7 — 1)) dr

(¢

< sup / eNH (= 7)n (7) |u (r) — v (7)| dr
< sup / NI (1 — 7Y (7) [ u(r) — v (7)]] dr

>0

\ 0
t

< sup/e‘“t‘T)H(t—T)n(T)dT [ = olly < My flu=wvlly,

>0
0
from (2.19), A is a contraction mapping.

By Krasnoselskii fixed point theorem, we know that there exists at least one fixed

point of the operator A + B.

Finally, let ¢ > 0, for any e; > 0, if 0 < 0; < ‘kl‘% [(1 — M, — My — ﬂ) 62] :
then |¢(t)] + |ug| < 01 implies that

e Ju (t)]
¢ t

< k| e”/e’“(ts) lu(s)| ds + /e’\t K@t —71)||f(r,u(r —r))|dr

0 0
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t

—(\+k)t e M e R —At
+|®(0)|e + ] + [e"H(t—u)g(T,u(t —r))dr

0
t

t
< |k /e(’\”“)(ts) ‘e’)‘su(s)‘ ds + /e’\(tT) Kt —7)C(r)¥ ( —Ar=r) lu(r — r)|) dr

0
t

|uol - r
+|<I>(O)|+2|k| -I—/ A )H(t—u)n(7)|e Au(T)‘dT

< (M1+M2+L)|\ I+ ||\| 5,

this means that

LN k| +2
M, + M. < )
HU’H/\ ( ( 1+ 2+ )\ k — |]€| 15

|k| + 2

] (1= My — 0y — )

SO

||u||)\ S (51 S €9.

Thus, we know that the trivial solution of (2.14) is stable in Banach space C m

2.2.4 An example

Let us consider the following nonlinear fractional initial value problem with delay:

e)\((17)\_1)t+26_>‘(t_7‘)u(t77‘))

D3[CD3u(t) — i sin(u(t—7r)) =0 1+em_m_”u(::tan(tu?’<t—r>) >0,
u(t) =®(t),t € [—r,0]
H%tl*a CDPu(t) = 0,u'(0) = ug € R,

(2.26)

w

a:%a5:§79(t,9§) 92+t2sm( ),0>0,g(t,0)=0,
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28
A((l—xfl)H—zze*A(t*T)) rctan( a3
f(t, o) = fa, (t,x) = = 1+e2>\w€7>\(t7r)a ctan(z ), then we have:
. 22z,
l9(t,2) =gt < gl —ylien(t) = i, [f (1, 2)| < Mo e
Az
((t) =05z and ¥ (z) = % positive nondecreasing function. ( is a positive con-
(e e]

tinuous integrable function on [0, c0) and / C(t)dt =2

0
Farthermore, if there exists 7 > 0 such that for all z € (0,7n] and o < SRR

then we have

;
v v 1
i@/€W7mﬁ_7K“””§ idMWg§4u+k) i
0
t 1

AIH(E—u) = P(lé)/e(Hkl)(t_s) (Sex_(:f?u)st’
< g/ ey G ez

0

Also, if we choose 6 > 2\77 (A + k) then for all £ > 0 we get

to~1

¢
1 dr

—A(t—T —1y5
/e CDNHE— 1) (r)dr = 6 /\2/1+72

0

0
1 k|
< —— =M 1— —— — M.
S A0k S TaTE T

All conditions of theorem 2.2 are satisfied, the trivial solution of (2.26) is stable



CHAPTER 3

FODE in fractional sobolev spaces
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3.1 Introduction

In this chapter, we are interested in the existence and uniqueness of weak solution
of a boundary value problem of fractional differential equations in fractional sobolev

spaces using fixed point theory.

Let T' > 0 be a real number and I = [0, T] be a closed and bounded interval of the
set of real numbers R. Consider the following nonlinear functional boundary value
problem of the higher-order fractional differential equations with Riemann-Liouville

derivative ¢ € (n — 1,n]

Diu(t) = gtu(t),Du(t), t€l, (3.1)
DY i 0, i=1,...,n,i#n—1and u(T) =0, (3.2)

where 1 <n—-1<qg<n, 0<s<1, g:IxR?— R is given function, D? denotes

the Riemann-Liouville’s fractional derivative.

At recent decades, majority of published papers has been devoted to give the
existence and uniqueness of solution of various classes of fractional differential and
integral equations in the space of continuous functions C'([a,b]) or C' (Ry). But
the discussion on measurable solutions of differential and integral equations re-
mains relatively few compared to continuous solutions of differential and integral
equations, we refer to some papers about this side as [24, 46, 47]. Where the LP-
solutions of fractional differential equations are discussed by Burton and Zhang in
[24] using some techniques to show the belonging of solutions to L* (R, ). In [46],
Schauder’s and Darbo’s fixed point theorems are employed to study the existence
of L? (R) —solutions of nonlinear quadratic integral equations. Also in [47], the
authors give different existence results for L? [a,b] and C ([a, b]) —solutions of some
nonlinear integral equations of the Hammerstein and Volterra types using some fixed

point theorems combined with a general version of Gronwall’s inequality.

Motivated by those valuable contributions mentioned above, we mainly discuss
the existence and uniqueness of solution for nonlinear FDE given by (3.1)-(3.2) in an

apropriate weighted fractional Sobolev space. To achieve our mentioned purpose, we
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first transform the fractional differential equation (3.1) with conditions (3.2) into an
equivalent integral equation with Green continuous function using Laplace transform
technic of the Riemann-Liouville fractional derivative and some analytical skills, then
we present a suitable study space which is based essentialy on the classical concepts

of weighted LP—spaces and Sobolev spaces.

3.2 Study space

We start by introducing the Riemann-Liouville fractional Sobolev space. Let
Wit (I)={ue LP(I) and I'*u € W'?(I)}.
Now, we present the completeness of W7 (I).

Lemma 3.1 The Riemann-Liouville fractional Sobolev space W7 (I) is a Banach

space endowed with the norm

=

otz = (Il + 1 =5ulf)

Proof. It is easy to verify that ||.||W;.,£( 1) defines a norm so we pass to prove the
completeness. Let (u,) € W57 (I) be a Cauchy sequence, this implies that (u,) and
(I'~*u,,) are Cauchy sequences in L? (I) and WP (I) respectively, since L? (I) and
WP (I) are completes, there exist functions u and u, such that u,, — v in L? (I) and
I'"=u, — ug in WY (I) [i.e. I'5u, — u, in LP (I) and (I'"*u,)" — u in L? (I)].

We have (I'"*u,) is a Cauchy sequence in WP (I), then (I'"*u,) is a Cauchy
sequence in LP (I), therefore, there exist v € LP (I) such that I'™*u,, — v in L? (I).
Beside, we have u,, — u in LP (I), then by using the fact ' : LP (I) — LP (I),s €
(0,1), we get I'"*u,, — I'""*u in L (I), so, I'*u = v and ['"*u = u,.

It remains to show that (I'~*u)" = u/, where u/ denotes the first derivatives in
distributions sens of u,. In other term we prove that (I'~*u,) — (I'~*u)" in L? (I) .
Clearly, L (I) C L}, (I), then I'"*u, determines a distribution Tji-., € ®'(I).

loc
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For ® € C! (I) and we use Holder inequality we get

T, () — Ty (B)] < / T, (8) — T'*u (1) |® (1)] dt

I
11l

IN

I'u, — Il_squ.

where p' is the exponent conjugate to p. therefore: Tji—s, (®) — Tps, (®) as n —
0.
Also, (I'"*u,)" determine a distribution T, then for ® € C! (I) we have

~

Tipi-su,y (®) = / (I'*u,) (t) @ (t) dt = —/ (I'5u,) (£) @' (t) dt = —Tps,, (¥,

we pass to the limit when n — 0o, we obtain
Ty (®) = ~Tpioe (8) = Ty (®)

for every ® € C!(I). Thus v, = (I'"*u)’ in the distributional sense on I for s €
(0,1).

Consequently, I*~*u € W (I) and (I'~*u)" = «/ in distributional sens. There-
fore I'*u,, — I'"%u in WP (I). Accordingly, u, — win Wg¥ (I). Whence (W37 (I),

H-Hw;{(z)) is a Banach space m

Remark 3.1 In [16], the authors discussed more broadly about fractional Sobolev
space W57 (I) in the case where p = 1 to make the relation between this spaces
and the classical spaces of functions of bounded variation BV. The authors

shown also the completeness of the fractional Sobolev spaces Wi (I).

However, we note that we can not show the existence and uniqueness of solution
with using the fixed point theorems in Wp¥ (I). To overcome these problem, we can
use a more suitable weighted norm.

We define the weighted LP—space
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7 (1) = {we 171, ul,,, < +oo},
where, [|ul[, , is the positive real valued function defined on L? (1) by
1
ull,, = /O’ (t)|u(@)Pdt ] forallue LP(I).
I

Also, we define the weighted fractional sobolev space with Riemann-Liouville frac-

tional derivative by
E,(I) ={ue P’ (I): I'"*uec WP’ (I)},

equiped with the norm

-

el = (lulls + 2 ullfp )

where

WP (1) = {v € P (I) : o' € LP (1)},

o is a given function defined on I and such that there exists a real number o, > 1
satisfies 1 < o (t) < oy, for all t € I, and

K'(t) e LP? (1), for ae. t €1, (3.3)
where .
/ e e
K (t) = e (34)
0
0, t<rT
Clearly

o(t—7)>1, forallt,7 € I witht > 7,
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3.3 Integral equation

Definition 3.1 A function u is a solution of the system (3.1)-(3.2) if v € E, (1)
and u satisfies (3.1)-(3.2).

Lemma 3.2 System (3.1)-(3.2) is equivalent to the following integro-differential

equation

where G (., .) denotes the Green’s function defined on I? by

Gl { Tl )T s o<r<esT
t,7) =
) q—n—+1 -1

- )T @ - 0<t<r<T

(3.5)

Proof. For conveniece we take [D? " (t)],_, instead b;. Applying Laplace trans-
form on both side of (3.1) with putting g (t) = ¢ (t,u (t), D*u (t)) and using Lemma
1.8, we get

n—1

AU (2) =Y 2 [D7u(t)],_, =G (2),

i=0
where U (z) and G (z) denote the Laplace transformes of u (t) and g (¢) respectively.

In other words, we can write
n—1
U(z)=271G(2) + Zbiﬂz’_q.
i=0

Inverse Laplace transform give us

t

wl) = 5 [ = g (ru(r) Doulr)dr + Z—p et

q
0
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t

1 g1 s - bi
:m/(t—ﬂ () D) i+ 3 =

0

q—1
)

we have b; =0,7=1,...,n for i # n — 1 then

But condition u (T") = 0, then we obtain

T
bn—l _Tnqul

F(q—n—|—2): T (q) /<T_T)q_ g(r,u(r), D*u(r))dr,

0

substuting in (3.6), we get

where G/ (.,.) is the Green’s kernel defined by (3.5). The proof of Lemma 3.2 is

complete m
Define the operator 7 : E, (I) — E, (I) by
T
Tu () = / G (t,7) g (r,u(7), Du (7)) dr. (3.7)
0

In the following, we present some existence results for the boundary value problem
(3.1)-(3.2).
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3.4 Existence results

In this section, we present two existence results for BVP of FODE (3.1)-(3.2) using
fixed point theorems. First result is based on Shauder fixed point theorem in order
to investigate the existence of the weak solutions of the system (3.1)-(3.2).

Assume the following hypotheses:

(H5) The function g : I x R — R satisfies the Carathéodory’s condition.

(H6) There exist a real constant ¢ > 0 and a function b : I — R, belongs to
L' (I) and such that

|9 (7, u, )| <b(7) + ¢ (Juf” + v]f),

for any 7 € I and any u,v € R.
(HT) There exists a real number R > 0 satisfies

o, T1+p1=s) &', 1°
i 74 <
T ar  Tap) [heter] <R

where G, = sup |G (t,7)|.
(t,r)el?

Theorem 3.1 If (H5) — (H7) hodl, then problem (3.1)-(3.2) has at least one solu-

tion.

Gy |To, +

Proof. Consider the operator 7 given by (3.7) and we define the set
Br = {u € Es, HUHO' < R}v

where R is the same constant defined in (H7). It is clear that Bp is convex, closed
and bounded subset of E,.
Firstly, we show that 7 Bg C Bg. Let u € Bg, then by using (H5), (H6), we get

7O} ITu®)] <00 [ 16 g (ru (), Du ()] dr
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ga@ﬁa/puxuﬂ+dWMP+w%ﬁme

ITull, < To.G2 bl + ] (38)

1 _s \/
< 16 Pl +c (ull, + ()

1
< o2 (bl +elulf].

Similarly, we obtain the following estimates

o, TP —s)

(1
[Tl < Gy @ e + ] (3.9)

and

(1" Tu) 1)

= ru—g%/“‘ﬂﬂ/gggmdﬂmwwwLmemwm

t

S i O %d (16l , + 7).
|| < %G (1Bl +crr]” (3.10)

We combine (3.8)-(3.10), it yilds

O 1+p(1—s) K’ .
(Fj(;i $))P + (FH(l ﬂp(;))p} |:||b||17o' + CRP] <R. (3.11)

I7ul, <G |To. +

Hence 7 Br C Bp.
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Secondly, We prove that A is continuous operator. Let u,, u in E, such that:

U, — u in E,, then for all ¢ € I we have

o (£)7 |Tuy (t) — Tu(t)]
G (¢, 7)]

T e

IA

o () g (7, un (7)), Dun (7)) = g (7, u (7), D*u (7))} d7

1
O'fG* ”Ngun - Ngu”Lo‘

IN

1
< 0lG.|[Ngun — NguHLa’

applying LP—norm, one gets

|Tun = Tul,, < (Tow)7 Gu [ Notn = Ngu“l,g : (3.12)
Also
o (t)7 |1V Au, (£) — ' Au (t)|
1 ¢ T
o (t)r s [1G(7.0)] )
< _
- Tl —s)/(t 7) /—0<9) (0 (0) 19 (0,un (0), D*un ())
0 0
— g(0,u(0),D*u(9))|) dbdr
t
o (1) G. .
< L 7= _ Noa — N
- - S)/(t 7) " I Ngtin = Noull, , d7
0
< O G N — N
- T (2 — S) * gtn gl 1,0
then

% %+1—s
|1 Tu, — DoTu|? < L

po = mG* ||Ngun — Ngqu,U . (313)



Moreover
o ()7 |(I"Tu,) (t) — (I'*Tu)' (¢)
t ) ]
G, 1.0d [(o(t—T1))"
< 7 o) S 2T g Ny, — N, :
< g 0§ [ | 1N = vl
0 _
l.e. K G
—s ! —s 4 o X
(" Tw) = (1 Tw) S Ty Wt = Nl
Combining (3.12)-(3.14), one finds
L
ol To K],

T —T < * T*%
1Tt =Tull, < G Lo + T =5+ ra—g)

X || Ngun — NguHLa'
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(3.14)

(3.15)

Taking (H5),(H6) and Lemma 1.9 into acount, we deduce that the Nemytskii oper-

ator N, is continuous from LP° to L', then the right side term of (3.15) tends to

zero when n tends to infinity. This show that the operator 7 is continuous.

Thirdly, we prove that the set 7Br = {7 u : u € Bg} is relatively compact in F,

using Kolmogorov theorem.

For any u € By and any 6 > 0, we have

o (t)7 |Tu(t+6) — Tu(t)]

B =

IN

o (t) /|G(t+ 6, 7)— G (t,7)||g (,u(7),D%u(7))|dr

3 =

IA

o (t)

[ S e () b+ el + 1D (P e
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< o) sup|G (t+8,7) = G (6,7 [I6l, + e (e, + (D)l )]

Tel
p
p?o-

= otsup sup[G t-+0.7) = G 1.1 (Il e ([l + [ (-0)

tel | tel

< atsup [sup (6t 6.7) = G ()| [l + elall]

tel | rel
[Tun (- +6) = Tu()ll,o
- <sup |[sup|G (t+0,7) — G (t,7)|] . (3.16)
P Tel

(T} (bl +cRe| el

Similarly

o (t)7 |1 T (t+6) — I'Tu (t)]

= r?ftz:) / (t=7)" / |G (7 +6,0) — G (r,0)| |g (6,u (6), D*u (6))| dbdr
< r?f?l)/ =07 f |G(T+5;9<)9; GO, 0y (6)

+ c(Ju(0)[" + |D*u (0)")] dodr
= r?fti) / (t =) sup |G (v +,6) = G (7.6)] 0],

0
we (Il + 1wl )| dr

17
T 50!k

< J — P
< pge swplGr+8.0) = G (r 0| [l +clul)]

- P2 < sup
1= (o) [|Ibl,, + e

el

s =s7,) (. — (I'*T) (.
D@ 8) (5 Tw) (- +8) — (" Tw) ()] (6 5.0~ 0]

(3.17)



71
Using same method, one finds

o ()7

(1" Tw) (t+8) = (1" Tw) (1)

t T

< %%/(t—ﬂ_s/K}(T—i—&@)—G(T,0)||g(0,u(0),Dsu(6’))|d0dT
. %%](tT)S7G(T+5;929)G(T,e)
x [0 (8) (b (9;: +c(lu (e)v? + D (0)]7))] ddr
< %%/(t—T)_SS}TiI}\G(t—I—(S,ﬂ—G(t,T)\dT
x| lbl,, + . (1l o + 1D Pl )|
a®i%]%$%ﬁm
<

: o [swp 6-+.0,7) - G 0]

M1 —s) tel
L))

[+ (i + -y

T(1—s)||(I"*Tu) (. +6) = (I'"*Tu) (.

( >H( ) ( )= ( ) ()Hp,agsup {sup|G(t+6,7-)—G(t77—)|
K], [||b||170+cRp} tel Lrel

Tel

(3.18)
From the continuity of the function G (.,.) on I?, we conclude that the second mem-
bers of (3.16)-(3.18) tend to zero when ¢ tends to zero, these prove the condition ()

of Lemma 1.10.

Fartheremore, from 3.11, we have ||[Tu||, < R for all u € Bg, this proves that
T Bpg, is uniformly bounded. Consiquently, 7 B, is relatively compact in E,. Finally,
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using Schauder’s fixed point theorem, we conclude that 7 has at least one fixed point
in Bg and the proof of Theorem 3.1 is complete m

Second result devoted to show the existence of unique solution of (3.1)-(3.2) using
Banach contraction principle.

Consider the following hypotheses on g:

(HS8) There exist a positive real number p' > 1 and a function ¢ : I — R, and
such that

(1) p € v (I) a.e. t € I, where %—1— 1% =1.

(17) For any t € I and any w,v,w,v € R, we have

|g (t7u’v) _9(7_7@7@” < Qo(t) [|u_ﬂ| + |U_U|]'

Theorem 3.2 Assume that (H5),(H8) hold. Then the boundary value problem
(3.1)-(3.2) has a unique solution provided

R ALENE LYl ) I

G-lelly | (T + 5 =5y r—gy| <

where G, = max |G (t,7)].
(t,m)ET?

Proof. Consider the operator 7 given by (3.7), we want to show that 7 is a
contraction mapping on F, (I). To this purpose, let u, v in E,, using (H5) and (H8),

then for a.e. t € I we have

o (t)7 |Tu(t) — To (1)

S

o —|G(t’7_)| O'T% T,U\T '8UT — T,U\T ﬁU’T T
(1 /<a<7>>; (0 ()* |9 (ru(r), Do) = g (70 (7), DV ()] d

0

3=

IA

G.o (t) /gp (1) [(0 (7'))% (]u (1) —v(m)|+ !D/Bu (1) — DPy (T)‘)] dr
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o (Ju —v| + |Du — Dv|)

1
Good llelly

IN

,

1
G.o? llglly [l =l , + [|D%u— D%, ]

IA

IN

.ot el [llu=oll,, + | (20) = (%)

p70:|

1
Gool [l llu—=vll,

IN

applying LP—norm, we get
1
1Tu—=To|,, <G (Tow)? [l@ll,y [lu—vll, (3.19)

Also

oW [y [IGEO oo s
= F(l—ﬁ)/(t ) o (6) 7% ls (0.00). D)

IN
73 Q
=y
=
==
|
3
&

i t
< i | [ =i el o (= vl D= D) |
0
1
G.ol By )
S F(Q_B)qﬂ 5”%0”]3, {HU_UHp,a‘*’ ([1 Bu) — ([1 ﬁU) p70:|7
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74
therefore
1— 1— TG, (TU*)%
|7 Tu— 17|, < e el ool (320
Moreover
o(t)7 u*ﬁqqg'@)—(fbﬂT@Y(w‘
< fria [ =07 [o@) @) que) - o)
+ ‘Dﬁu (6) — D°v (0)|)] dodr
c. d flot=np |
S | el

0
o (Ju —v| + |Du— D’BUD‘

x| ,
p

using some precedent method and applying LP—norm on both sides of previous in-
equatity, we get

G, /
< HK 3.21
poe (1 —=0) ( )

el =l

|(rr7w) — (1P T0)

Combining inequalities (3.19)-(3.21) then we obtain

T

. (To)r  I1Kl,,
(To.)r + - ) [u—,

1-5
r2-p5) ' TA-8

17w = Toll, < Gullelly
< u—vl,,

this means that the operator is a contraction. Hence, by using Banach contraction

principle and according to the theorem 3.2, we conclude that 7 has a unique fixed

point in E,. Then (3.1)-(3.2) has a unique fixed point m



[6)

3.5 Examples

Example 3.1 Consider the following boundary value problem of fractional differen-

tial equations for p =4 :

2 et (tu()? — (tD*u(t)?]”

D (t) = (141)3et+Tul] ,tel=[01], (3.22)
D(q_i)u|t:0 = 07 1= 1)2737 57 U,( ) 0
-1 2
t2 et [(tu)?—(tv)?
q= ga s = %a g (t,u,v) = (14_[t)3et+IU\ ] ) then
ot 4 (4 | 4 3 4yt 4 vt
ghuy) < oLV e T ty)
Ao e = (Ut el ' (L4 0) erh
1 T* (u* 4+ v*)

IN

<b(t)+c(ut +0Y),

t2(1+)° (1+1t)°

where b (t) = tl(ll RE and ¢ = 1. o(t) = (1+1)", it is clear that o (t) <
2(1+
o(t)o(t—r)fort> 7, and

1

/ o(t=1)" /1+z 66 (5t + 11)
= 1 dz = )

t—T 26 55

0

and

some computations give us
/ 8
| K ||4’U ~ 3.187991075720807, ||b||1’g =3

then
R* — 4.672639065946051 R + 2.666666666666665 < 0,

so R € [0.598080985027521, 1.405251623483919].
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Using theorem 3.1, we deduce that the nonlinear functional boundary value problem

(3.22) has at least one solution for any

R € [0.598080985027521, 1.405251623483919] .

Example 3.2 Consider the following boundary value problem of fractional differen-

tial equations with p = 4.

(3.23)

Du (t) =3 (t) [e 'sin (tu) + t*h (DPu)], tel=0,1],
D@ yl,_g=0,4i=1,2,3,5 u(l)=0,

a=35 B=3 9(ay) =20 [e7" sin (tu) + £ (D7u) | where: h(z) =
ot

) = —1+t) By the finite increments theorem we get
h(z) —h(y)l <e 'tz —yl,
for x,y € R (since z + e~* > 1 for all real z), also

|sin (tz) — sin (ty)| < t* |z — y],

then

lg (t,z,y) — g (t,7,7)]

IN

@ (t) [e7" [sin (tz) —sin (t7)] + ¢* |1 (y) — h (7)]
@

< @[l =7 +y -7l

so, condition (H8) holds with ¢ (t) = , obviously ¢ € L1 ([0,1]) and

92(1+t
Il = 0.0363.
o(t)=(1+1t)", it is clear that o (t) > 1 for t € [0,1], and the Banach space is

E(I) = {u € LY (I): [iue Wi (I)} ,



7

also

K(t):/(J(t_T))pdT:/lz—zzdz:6t6(55t5+11),

and

then, some computations give us

]

~ 3.187991075720807,
4,0

and

1 TV (To )% HK/
G, To,)r + 4+ P27 1 ~0.5046 < 1.

So, using theorem 3.2, we deduce that the nonlinear functional boundary value

problem 3.23 has a unique solution.



CHAPTER 4

Fractional diffusion integrodifferential equation
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4.1 Position of problem

The main goal of this chapter is to prove the existence of the unique solution and
some regularity results for the following FPDE with fractional integral condition by

the use of Rothe time discretization method:

D%u (t,z) — Au(t,z) = /a (t —s)Au(s,z)ds+ f(t,z) in I x Q, (4.1)

0

With initial condition

u(0,2) = ug (z), in Q, (4.2)
Fractional integral condition
I'*u(0%) =U; (z),in ©Q, (4.3)
And boundary condition
u(t,x) =0, on I x 09, (4.4)

where a € |0, 1[, I = [0, 7] and € is an open bounded domain of R", with a smooth
boundary 9. The fractional integral 7'~ and the derevative D® are understood

here in Riemann-Liouville sense.

we start by the discretization formula of the integro-differential fractional diffu-
sion equation (4.1), using an implicit scheme, then we construct a discrete numerical
solution of the discretized problem, then, we derive some a priori estimates for the
approximations. The convergence of the method and the well posedness of the prob-
lem under study are also established. At last, we discuss the uniqueness of the weak
solution.

Clearly, if g € L? (0,T), 1 < p < 00, and ¢ : ]0,7] — R™ is a function defined
by
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then(see [49])

t
orgeLP(0,T), Where<p*g(t):/(p(t—s)g(s)ds
0

and ¢ X g is absolutly continuous, since
o(t—s)g(s)e L' (0,T).
Moreover, if h is a function such that g > h, then
I%g (t) > IR (t)

which means that I* is increasing.
The problem (4.1)-(4.4) can be written as

t

%]1_au (t,z) — Au(t,z) = /a (t —s)Au(s,z)ds+ f(t,x). (4.5)

0

4.2 Assumptions and discretization scheme

In this section, we give the assumptions that will ensure the existence of the unique
weak solution. Let L?(Q) be the usual space of Lebesgue square integrable real
functions on 2 whose inner product and norm will be denoted by (.,.) and ||.||,
respectively, and ||.||_, stands for the norm in H ' (Q)(the dual space to H} ().

We make the following assumptions:

(H9) ug € Hy () NL>(Q)

(H10) f(t) € L* (Q) and |[f (£) = f (#)]| < L]t —¥|

(H11) a is a continuous function such that |a (t) —a (t')| < ¢ |t — V|

We look for a weak solution in the following sense.

Definition 4.1 By a weak solution of problem (4.1)-(4.4) we mean a function u

satisfying:



81

1 uwe L*(1,H; () with I'™* (u) € C (I, H (Q)).
2 O (u) e L2 (I, H ().
3 u satisfies (4.2) and (4.3).

4 For any ¢ € H} (), we have

t

/(@Ila (), ) dt+/ (Vu, Vo) d / f, ) dt+/ /a(t—s) Vu(s)ds, Vo | dt.

I I 1 0

We divide the interval I into n subintervals of length h = % and denote u; =

u (ti, ), t; = ih, du; = “="=, 1 = 1,...,n. We will omit x for sake of simplicity,

the associated discretized problem is

i—1

(1 () = I (wi1) , 8) + h (Vi Vo) = h(fi,d) + 5 Y (aiVu;, Vo)
j=1

(4.6)
The existence of a weak solution u; € H} () at each time step is ensured due

to the monotony and the coercivity of the operator % — Au; — ajhAu; .

4.3 A priori estimates

In this section, we establish some useful a priori estimates.

Lemma 4.1 The following estimates hold uniformly in n,,j and h:

l l
STnfor= @w)|* < ¢ Vul® <00 Y IVu - Vua | < ¢ (47)

=1
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Proof. Setting ¢ = u; — u;_1 in (4.6) and summing up for : = 1, ..., [, we obtain

l

l
Z h (5]1_a (u;) ,5Uz’) + Z (Vui, Vu; — V1) =
i—1 i=1

l l i—1
=1 =1 j=1

The equality (4.8) is briefly denoted as: J; + Jy = J3 + J4. Now we estimate each

term, by the use of mean value theorem we get
!
Ji > C RS (u)|) (4.9)
i=1

Moreover

l l
2J2 = 2 Z (Vuz — V’U,i,b Vuz — Vui,l) + 2 Z (Vui,l — Vu,-, VUZ — Vui,l)

i=1 i=1

l
=2 ||V
i=1
l l l
= D IVu = VP4 ) [Vl = Y 1 Vuia?
i=1 =1 =1

l
= D IVui = Vit |* + | Varl|* = [[Vuo || (4.10)

=1

Due to Cauchy-Schwarz, e—Young, Poincaré’s inequalities, we obtain

! l
1 1
<C <5+ Z g h||5uz||2> <C <5+ z E h||V5Ui||2) :
i=1 =1
(4.11)

By the use of Cauchy-Schwarz and e—Young inequalities, the memory term can be

l

> h(fi, )

i=1

| J5] =

estimated
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—

71—

|1y = (@ijVuj, Vou;)

21
C (6+§Zh||V5ui||2>. (4.12)

IIM

IN

Summarizing all these consideration, collecting (4.9)-(4.12), choosing e small, then
the discrete Gronwall Lemma conclude the proof of the lemma 4.1 m

Let @" be a step functions defined by:

i t e (ti—1,t; .
H”(t)—{ " (vt (4.13)
Ug =0
— = (u;), te (ti-1,
T, @ () = (1) €tivtd 4 (4.14)
U, t=0

We denote by ™ and M™ the functions

L tetint .
() = / (i, i i=1,..n, (4.15)
fo t=0

WYt ayVuy tE [t t

M" (1) = Lo @V L€ (it b i=1,..n (4.16)
haquo t=0

We define Rothe’s functions on the interval I by

u” (t) = U1 + (t — tifl) (5ul~, t e [tifl, tl] s 1= 1, ey N (417)

[n (ﬂn (t)) = Il_a (ui_l) + (t - ti—l) 5]1—a (Uz) te [ti—l’ti] > 1= 1, . (418)

/ 10112, < C.
I

Lemma 4.2 The a priori estimate
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holds for 1 <i < n, where ||0:L,,|| ;= sup  |[(O:ln, ).

IplI<1, pEHG

Proof. Applying Lemma 4.1 we conclude the proof m
Lemma 4.3 There exists a positive constant C' such that

J
o h|Vulf<C, 1<) <n
=1

Proof. According to Lemma 4.1, we have
h || Vu|)? < hC,

summing over i yields

J J
T
> 112 <) =j=—C<
h\|Vu;||” < hC ]nC’_C’,

=1 i=1

since j <n m

4.4 Convergence and existence results
From lemmas 4.2 and 4.3, we could say
max [ Zal] + 19 all p21, -1y < C-

Hence, there exist (see [60] lemma.1.3.13) w € C (I, H* (Q)) N L> (I, L* (Q)) with
Oyw € L* (I, H ' (Q2)) and subsequence I,,, such that

L, — winC((,H'(Q), I, () = w(t) in L*(Q)
L () — w(t) inL*(Q), Ol, = 0w in L*(I,H '(Q))  (4.19)
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In view of lemma 4.1 one can deduce that {@"},, is uniformely bounded in L? (I, Hg (2)) .

Thereafter, we can extract subsequence {u"}, _ such that

u™ — wu in L*(I,H)(Q)). (4.20)

k—so00

Therefore, it follows from (H10) that

s 1Q

1" @) = fll 2@y <

I

and so
fr(t) — fin L*(I,L(Q)). (4.21)

n—-:a;o

Proceeding as in [63], we will be able to state the following lemma.

Lemma 4.4 The sequence {M"}  is uniformly bounded and possess a subsequence
{Mm™}, such that
M™ — M in L*(I,L*(Q)), (4.22)

k—o0

where
t

(M (u),¢) = /a(t—s)Vu(s)ds,qu

0

Our next target is to prove the strong convergence of {I,,}, ~and {@"}, in
L?(I,L* () and L2 (I, H} (2)) respectively.

Lemma 4.5 There exist subsequences {I,, }, of {I,}, and {u™}, g of {u"}, for

which

I,, — win L*(I,L*(Q)),
u™ — win L* (I, Hy (). (4.23)

Proof. By vertue of Kolmogorov compactness criterion, it is sufficient to prove
that

2 —n||2
HI71HL2(I,L2(Q)) + ||z HL2(1,H&(Q)) =G,
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|2 (t+ 5,2+ h) = L, (¢, x)HL?(I,L?(Q)) s,lmo 0,

[ (¢ 4,2+ h) =" (60| (1)) 7= O

s,|h|]—0
This can be easily obtained using the above lemmas m

The main result of this paper is given in the following theorem.

Theorem 4.1 The limit u is a weak solution of the problem (4.1)-(4.4) in sense of
definition 4.1.

Proof. In view of lemma 4.5 and the well-known Minty-Browder’s trick, we can
conclude that w = I'=® (u) . On the other hand, from the equality

T (@) — Uy = / 0T, (@ (5)) ds (4.24)
0
we get as k — o0
¢
'~ (u) - U, = /8tll_°‘u (s)ds (4.25)
0

This implies that
12 (u (01)) = U

Hence, the condition (4.3) is fulfilled. Obviously, in light of (4.13)-(4.18), the identity

(4.6) can be rewritten as

/(@In (t), ) dt—l—/(Vﬂ”,Vqﬁ) dt:/(f”,gb) dt+/(M”,V¢) dt, Yo € Hy ().

1 I I I

(4.26)
Now, replacing n by ny — oo in (4.26) then taking (4.19), (4.21), Lemmas 4.4 and

4.5 into account, it yields

t

/(atfl—“ (u), ) dt+/ (Vu, Vo) dt = / (f,9) dt+/ /a(t —s)Vu(s)ds, Vo | dt.

I 1 1 0
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Thus, u is a weak solution of problem (4.1)-(4.4) =

4.5 Uniqueness of weak solution

Now, we are prepared to prove the uniqueness of the weak solution as follows.

Theorem 4.2 Under the assumptions (H9) — (H11), the problem (4.1)-(4.4) has a

unique weak solution.

Proof. Let us suppose that the problem (4.1)-(4.4) has two weak solutions u;,

g, then u = u; — uy satisfies

t

/ (0 (I'uy — I'"%un) , §) dit+ / (Vu, Vo) dt = / / a(t—s)Vu(s)ds, Vo | dt

I 7 \0
(4.27)
We divide the interval I into subintervals with the length p such that
mjax\a (t)].p <1,
then we choose the function ¢ in (4.27) as
u(t tel0,p
P 10 0.1
0 telpT]
we obtain
p
(Il_a (Ul) — ]l—a (U1> , U — UQ) + / HVU (t)”2 dt
0
p t
= / /a(t —s)Vu(s),Vu(t) | dt (4.28)

0 0
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Monotony of I'=% yields

(1 (uy) = 1"

4.5. Uniqueness of weak solution

('LLQ) , Uy — 'LLQ) 2 0.

Hypothesis (H11) and Cauchy-Schwarz inequality give us

/p Ivu@a < [

(VAN
—

IN

It follows by means of

[

0

that

max la (t)

(/a(ts)Vu(s),Vu(t)) dt

0
t

/a(t—s)Vu(s)ds

/Vu

AV (t)] dt

£ dt </\|vu )| dt:

/||Vu )12 dt<max|a (/ |Vu(t) dt)

Cauchy-Schwarz inequality once more implies

P p
[Ivu @I it < maxfa o) [ V)] i
0 0

Since

m]ax|a )] .p<1,

dt ./HVu(t)Hdt.

(4.29)

(4.30)

(4.31)
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we get
el 01, g ) = O- (4.32)

Which proves that
u(t)=0, vt €[0,p]. (4.33)

Repeating the same procedure on the intervals [ip, (i + 1) p| , we obtain
u(t)=0, Vtel.

Consequently, u1 = uy, =

4.6 An example

Consider the following fractional integrodifferential equation

t
RLD%U (t, I) _axa;u (t7 ZE) — t!L‘+/ e(t_s)axa:u (Sa SL’) dS, (tv l’) S [07 T] X (0’ 1) ’ (434)
0

w(0,2) =ug(z) =2(1—x), z€(0,1), (4.35)
u=0on [0,7] x{0,1}, (4.36)
I3 (0%) = Uy (x) € HE (0,1). (4.37)
We have .
.\t T
17 (6] = O/<m> tn] =<z,
then f (t) € L?(0,1) and
1f (t1) = f ()|l = 73 < §|t1—t2\,
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which implies that (H10) is satisfied. On the other hand, it is easy to see that
ug € L?(0,1), uy € L?(0,1) and ug (0) = ug (1) = 0, hence uy € Hg (0,1) . Moreover,
up () = (1 —x) < 1 therefore, uy € L (0,1) and consequently (H11) is also
verified. All conditions of theorem 4.1 and theorem 4.2 are now fulfilled so we deduce
that (4.34)-(4.37) has a unique weak solution.
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CONCLUSION

We think that the presented results in this thesis are considerable and important
contributions in the field of fractional differential equations. We proveded several
new and different results for existence, uniqueness and stability of solutions for some
kinds of fractional differential equations by the use of some methods and skills:

We Exploited the new Banach space discussed by Burton in 2006 [23] to provided
a new uniqueness result for fractional differential equations on unbounded domain
in the submitted paper [42] as well as we investigated a new stability result for a
developed type of mixed fractional differential equations with finite constant delay
on unbounded interval. Farthermore, we presented a generalization of the fractional
Sobolev spaces presented in the paper [16] in early 2016 as shown in Chapter 3.
In parallel with this, Some existence results for fractional differential equations are
obtained in this fractional Sobolev spaces, see the submitted paper [41]. On the
other hand, we presented a contribution in the fractional partial differential equations
through the published paper [26] in 2018. Where we shown the existence of unique
weak solution for fractional diffusion integrodifferential equations by utilizing the
Rothe’s time discretization method, all our results were supported by confirmation
examples.

Otherwise, this field is very rich in different discussions ,projections, extentions,
and open questions; therefore different applications can be launched as a result of the
fractional calculus as the submitted paper [43] which concerned with the existence
of solutions under weak topology in Banach space setting for fractional differential
equations. Moreover, we intend to study the existence of weak solutions fo fractional
differential equations with integrable delay, as well as we foresee the study of the
uniqueness and stability of the solution of such a class of equations by employing the
progressive contractions which discussed by Burton in 2017 [22]. Despite all that,
numerical study of fractional differential equations arouse a lot of our interest and
remains the biggest obsession for us due to their importance in the validation of

theoritical study and their invaluable credibility in physical and tangible reality.
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