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List of symbols

.

FODE : Fractional ordinary di¤erential equation

FPDE : Fractional Partial di¤erential equation

IV P : Initial value problem

BV P : Boundary value problem

� (:) : Gamma function

B (:; :) : Beta function

E� (:) : Mittag-Le­ er function

I�0+ : Right-fractional Riemann-Liouville integral
GLD�

0+ : Grunwald-Letnikov fractional derivative
RLD�

0+ : Right-fractional Riemann-Liouville derivative
CD�

0+ : Right-fractional Caputo derivative

[:] : Integer part of a real number

,: Denoted by
C (I;R) : Space of continuous functions on I
Cn (I;R) : Space of n� time continuously di¤erentiable functions on I
AC (I;R) : Space of absolutely continuous functions on I
BC (R+;R) : Space of bounded continuous functions on I
L1 (I;R) : space of Lebesgue integrable functions on I
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Lp (I;R) : space of measurable functions u with jujp belongs to L1 (I;R)
Lp;� (I;R) : Weighted Lp � space with weighted function �
L1 (I;R) : space of measurable functions essentially bounded on I
Wm;p (I;R) : (m; p)� Sobolev space
W s;p
RL (I;R) : (s; p)� Riemann-Liouville fractional Sobolev space

D0 (I) : Space of distributions

ru : Gradiant of u
4u : Laplacian of u
@u : Boundary of u

resp: : respectively

R� L : Riemann-Liouville
a:e: : almost everywhere

!: strongly converge to
*: weakly converge to



 الملخص

 إلى أساسا ذلك ويرجع الماضية، الث�ثة العقود خ�ل بالغة وأھمية كبيرة شعبية ةالكسري التفاضلية المعاد�ت موضوع اكتسب
 أساليب عدة بالفعل يوفر فھو. والھندسة العلوم في واسع نطاق على المنتشرة و المتنوعة المجا�ت من العديد في تظھر التي تطبيقاته
 المرتبطة الفيزيائية الظواھر من الكثير نمذجة في أھميتھا وكذلك والتكاملية التفاضلية المعاد�ت لحل مفيدة تكون أن يمكن وطرق

 .جدا والقصيرة جدا السريعة بالتغيرات

 اتوذ العادية التفاضلية للمعاد�ت النظرية الدراسة من كبيرا جزءا تمثل الحلول، واستقرار تفرد وجود، أخرى، ناحية من    
 المعاد�ت أنواع لبعض النوعي التحليل جانب بمناقشة الرسالة ھذه في سنھتم حيث  كسرية، رتب من الخطية غير الجزئي ا8شتقاق
 و شودر باناخ،ل الثابتة النقطة نظريات نستخدم الغاية، لھذه تحقيقا. الكسرية الجزئية التفاضلية والمعاد�ت الكسرية العادية التفاضلية

 الحل وتفرد وجود 8ثبات روث طريقة نستخدم كذلك و الكسرية، العادية التفاضلية للمعاد�ت باناخ فضاءات في كراسنوسلسكي
 بعض إعطاء يتم نظريا، عليھا الحصول تم التي نتائجنا وفائدة فعالية ولضمان. ھيلبرت فضاء في كسرية برتبة ا8نتشار لمعادلة
 .التوضيحية ا?مثلة

 المجال ، الحدية القيم مسائل ا?ولية، القيم مسائل الكسري، ا�نتشار معادلة الكسرية، التفاضلية المعاد�ت: المفتاحية الكلمات    
 الحل ا8ستقرار، التفرد، الوجود، الكسري، سوبوليف فضاء المثقل، باناخ فضاء المختلطة، المشتقات المحدود، غير الزمني

  .لكراسنوسلسكي الثابتة النقطة نظرية ، لشودر الثابتة النقطة نظرية ، لباناخ التقلص مبدأ روث، طريقة الضعيف،
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Abstract

The subject of fractional di¤erential equations has gained considerable popularity

and importance during the past three decades or so, due mainly to its demonstrated

applications in numerous seemingly diverse and widespread �elds of science and

engineering. It does indeed provide several potentially useful tools for solving di¤er-

ential and integral equations as well as their importance in the modeling of a lot of

physical phenomena associated to very rapid and very short changes.

On the other hand, existence, uniqueness and stability of solutions, represent

a large part of the qualitative theory of nonlinear ordinary and partial di¤erential

equations of non-integer order. Where we are interested in this thesis on the discus-

sion of qualitative analysis of some kinds of fractional ordinary di¤erential equations

and fractinal partial di¤erential equations. To this end, we utilize the �xed point

theorems of Banach, Schauder and Krasnoselskii in Banach spaces for fractional or-

dinary di¤erential equations as well as Rothe discretization method is used to show

the existence and uniqueness of weak solution for fractional di¤usion equation of

the second-order di¤erential Volterra operator in Hilbert space. To guarantee the

e¤ectiveness and usefulness of our obtained results theoretically, some illustrative

examples are given.

Keywords: Fractional di¤erential equations, fractional di¤usion equation, initial
value problems, boundary value problems, unbounded interval, mixed derivatives,
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weighted Banach spaces, fractional Sobolev spaces, existence, uniqueness, stability,

weak solutions, Rothe method, discretisation scheme, Banach contraction principle,

Schauder �xed point theorem, Krasnoselskii �xed point theorem.



Résumé

Le sujet des équations di¤érentielles fractionnaires a acquis une popularité et une

importance considérables au cours des trois dernières décennies, principalement en

raison de ses applications démontrées dans de nombreux domaines de la science et

de l�ingénierie apparemment diversi�és. Il fournit en e¤et plusieurs outils poten-

tiellement utiles pour résoudre les équations di¤érentielles et intégrales ainsi que

leur importance dans la modélisation d�un grand nombre de phénomènes physiques

associés à des changements très rapides et très courts.

D�autre part, l�existence, l�unicité et la stabilité des solutions représentent une

grande partie de la théorie qualitative des équations di¤érentielles ordinaires et parti-

elles non linéaires d�ordre non entier. Où nous sommes intéressés dans cette thèse sur

la discussion de l�analyse qualitative de quelques types des équations di¤érentielles

ordinaires et partielles fractionnaires. A cette �n, nous utilisons les théorèmes des

points �xes de Banach, Schauder et Krasnoselskii dans des espaces de Banach pour

les équations di¤érentielles ordinaires fractionnaires ainsi que la méthode de discrét-

isation de Rothe pour montrer l�existence et l�unicité de la solution faible dans un

espace de Sobolev pour l�équation di¤érentielle partielle de di¤usion d�ordre frac-

tionnaire. Pour garantir l�e¢ cacité et l�utilité des résultats obtenus théoriquement ,

quelques exemples illustratifs seront donnés.

Mots clés: Equations di¤érentielles fractionnaires, équation de di¤usion fraction-
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naire, problèmes de valeurs initiales, problèmes de valeur aux limite, intervalle non

borné, dérivations mixtes, espaces de Banach pondérés, espaces de Sobolev fraction-

naires, existence, unicité, stabilité, solution faible, méthode de Rothe, schéma de dis-

crétisation, principe de contraction de Banach, théorème du point �xe de Schauder,

théorème du point �xe de Krasnoselskii.



Introduction

The theory of derivatives of non-integer order goes back to Leibniz�s note in his list to

L�Hospital, dated 30 september 1695, in which the meaning of the derivative of order

one half is discussed. Leibniz�s note led to the appearance of the theory of derivatives

and integrals of arbitrary order, which by the end of 19 century took more or less

�nished form due primarily to liouville, Grunwald, Letnikov, and Riemann. For more

than two centuries, the theory of fractional derivative developed mainly as a pure

theoretical �eld of mathematics useful only for mathematics. However, in the last

few decades many authors pointed out that derivatives and integrals of non-integer

order are very suitable for the description of properties of various real materials. It

has been shown that new fractional order models are more adequate than previously

used integer-order models. For more details of fundamental works on various aspects

of the fractional calculus and fundamental physical considerations in favour of the

use of models based on derivatives of non-integer order we refer the monograph of

Bagley [11], Engeita [33], Hilfer [44], Khare [48], Kilbas [49], Magin [60], Mainardi

[61], Miller and Ross [64], Nishitomo [67], Oldham [69], Oldham and Spanier [70],

Petras [71], Podlubny [72], Sabatier et al. [78], and the references therein.

Fractional derivatives provide an excellent instrument for the description of memory

and hereditary properties of various materials and processes. This is the main ad-

vantage of fractional derivatives in comparison with classical integer order models, in

11
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which such e¤ects are in fact neglected. The advantages of fractional derivatives be-

come apparent in modelling mechanical and electrcal properties of real materials, as

well as in the description rheological of rocks, and in many other �elds us chemistry,

biology, engineering, viscoelasticity, signal processing, electrotechnical, electrochem-

istry and controllability, see the above mentioned references.

The main objective of the present thesis is to proved some existence and unique-

ness results for some kinds of ordinary di¤erential equations of fractional order and

the partial di¤erential equations which contain a fractional derivative term. We need

to this end to use various fundamental concepts of fractional calculus and fractional

derivative and its properties in order to use it in fractional di¤erential equations and

in partial fractional di¤erential equations. Also, some concepts of functional analysis

are presented to show these purposee. Beside, The subject of �xed point theory

become an important �ld of mathematics given its great importance in the other

domains of mathematics especially in ordinary di¤erential equations, partial di¤er-

ential equations, integral equations, operator theory, numerical analysis and other

mathematic areas. In our work, we will use �xed points theorems on a large scale

to show the existence, uniqueness and stability of solutions of some problems that

we will given later. For existence of solutions, we employ the Shauder �xed point

theorem, the Krasnoselskii �xed point theorem, as well as Banach contraction prin-

ciple is used for uniqueness, and too, by utilizing Krasnoselskii �xed point theorem

we discuss the stability of solutions. Some contributions around applications of �xed

point theorems in fractional di¤erential equations to show the existence, uniqueness

and stability of solution found in [1, 5, 6, 15, 21, 23, 37, 46, 47, 51, 68] and the

references cited therin.

On the other hand, Fractional di¤usion equations include the mathematical model

of large class of problems. They describe anomalous di¤usion on fractal (physical

objects of fractional dimension), fractional random walk. For details, see [13, 34, 38]

and the references therein: Let us cite some interesting papers dealing with this kind

of problems. The �rst of them is that of Oldham et al. [70] whose studied the relation

between usual di¤usion equation and a fractional di¤usion equation. In [62]; F.

Mainardi et al. estabilished the model of di¤usion waves in viscioelasticity based on
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fractional calculus. Agarwal [3] discussed the solutions for fractional di¤usion wave

equation de�ned in a bounded domain. El-Borai [32] investigated the fundamental

solutions of fractional evolution equations. Recently, Mophou et al. [38] considred

fractional evolution equation with fractional integral condition in Sobolev space,

where the authors assumed that the operational coe¢ cient is the generator of a

semigroup of contractions.

Among other methods, the Rothe�s method is one of the more popular that is

commonly used in the time discretization of evolution equations where the derivatives

with respect to one variable are replaced by di¤erence quotients that �nally leads

to systems of di¤erential equations for functions of the remaining variables. Rothe�s

method as an approximative approach is well suited not only to prove the existence

results, but also for various applications. This method was introduced by Rothe in

1930 for solving second order linear parabolic equations with one space variable( see

[77]). Later, this method was adopted by Ladyzenskaja [53, 54] to solve linear and

quasilinear parabolic problems of second order and linear equations of higher orders.

Further development is connected with Rektorys (see[74, 75]) who obtained more

smooth solutions. Recently, Rothe�s method has been devloped to cover other types

of equations as we can see in [12, 27, 28, 31, 39, 40, 52].

The scheme of the Rothe method is given as follows;

We divide the time interval into n subintervals (ti�1; ti) ; i = 1; :::; n; where ti = ih,

h = T
n
. We donote by ui = u (ti; x) = ui (x) = u (ih; x) the approximants of u:

We replace the derivative (of the function u) @u
@t
by �ui =

ui�ui�1
h

; for all t =

ti; i = 1; :::; n:

We obtain a system consisting of n equations in x where the unknown is ui(x),

so we approach the problem posed in every point by a new discrete problem.

We determine the functions un solutions of the obtained system.

We build the Rothe functions de�ned by

u(n) (t) = ui�1 � �ui (t� ti) ; t 2 [ti�1; ti] ; i = 1; :::; n:

and the corresponding test functions
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un (t) =

(
ui t 2 (ti�1; ti]
u0 t = 0

; i = 1; :::; n:

Motivated and inspired by the works mentioned above on qualitative theorie of frac-

tional di¤erential equations and as a contribution to enrich the works previously

conducted in this orientation, the main goal of this thesis is to show new results

about existence, uniqueness and stability of solutions for initial value problems and

boundary value problem for some kinds of partial and ordinary di¤erential equa-

tions of fractional orders on bounded and on unbounded interval involving Riemann-

Liouville and Caputo fractional derivatives. The discussion of solutions will be in

some Banach spaces and Hilbert spaces that we will present it in later.

This thesis consists of four chapters.

Chapter 1 devoted to give a preface on the theory of functional spaces, special

functions, fractional derivative and fractional integral, some tools of functional ana-

lysis and �xed point theorems.

Chapter 2 is based on the submitted paper [42] and new other results on going

redaction. We give some results about uniqueness, existence, and stability of solu-

tions on unbounded interval using Krasnoselskii �xed point theorem and Banach

contraction principle in weighted Banach spaces of the following fractional initial

value problem

(
CD�u(t) = f (t; u(t)) t � 0;
u(0) = u0; u

0(0) = u1;

and the delay fractional initial value problem8>>>><>>>>:
D�[CD�u(t)� g(t; u (t� r))] = f(t; u (t� r)); t � 0;

u (t) = � (t) ; t 2 [�r; 0] ;

lim
t!0
t1�� CD�u(t) = 0; u0(0) = u0.

Chapter 3 is based on the submitted paper [41]. We will interested with the study of
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the following boundary value problem of fractional di¤erential equations of Riemann-

Liouville type(
Dqu (t) = g (t; u (t) ; Dsu (t)) ; t 2 I;

Dq�iujt=0 = 0; i = 1; :::; n, i 6= n� 1 and u (T ) = 0;

we prove the existence and uniqueness of weak solution in weighted fractional Sobolev

spaces (which we will construct later) using Shauder �xed point theorem and Banach

contraction principle.

Chapter 4 is based on the published paper [26] which deals with the following

fractional di¤usion equation of the second-order di¤erential Volterra operator and

fractional integral condition

D�u (t; x)�4u (t; x) =
tZ
0

a (t� s)4u (s; x) ds+ f (t; x) in I � 
;

u (0; x) = u0 (x) in 
;

I1��u
�
0+
�
= U1 (x) , in 
;

u (t; x) = 0 on I � @
:

The existence and uniqueness of a weak solution in an appropriate sense as well

as some regularity results are obtained by the use of Rothe�s discretization method.

Here,4 is the di¤erential operator de�ned by the application of the gradient operator
followed by the application of the divergence operator, that is

4� =
�!r :
��!r�� = div ���!grad��

=

�
@

@x1

@

@x2
...
@

@xn

��
@�

@x1

@�

@x2
:::
@�

@xn

�T
=

nX
i=1

@2�

@x2i
:



CHAPTER 1

Preliminaries

In this chapter, we present some basic notations, de�nitions and properties from such

topics of analysis which are used in the other chapters as special functions, functional

spaces, fractional integral, fractional derivative, �xed point theorems etc. For more

details we refer to the monographs of Adams[2], Besov [17], Brezis [20] , Hilfer [44] ,

Kilbas [49], Kolmogorov [50], Podlubny [72], Precup [73], Renardy and Rogers [76],

Smart [79] and the book of Zeidler [82].

1.1 Functional spaces

Let R+ = [0;+1) and let J := [0; T ] the compact interval of R+. we present the
following functional spaces:

De�nition 1.1 Let C (J;R) is the Banach space of continuous functions u : J ! R
have the valued in R; equipped with the norm

kuk = sup
t2J
ju (t)j :

Analogoustly, Cn (J;R) the Banach space of functions u : J ! R where u is n
time continuously di¤erentiable on J .

16
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Denote by L1 (J;R) the Banach space of functions u Lebesgues integrables with
the norm

kukL1 =
Z
J

ju (t)j dt;

and we denote Lp (J;R) (Lp;� (J;R) resp.) the space of Lebesgue integrable
functions on J where jujp (� jujp resp.) belongs to L1 (J;R) ; endowed with the
norm

kukLp =
Z
J

ju (t)jp dt;

kukLp;� =
Z
J

� (t) ju (t)jp dt; resp.

In particular, if p = 1, L1 (J;R) is the space of all functions u that are
essentially bounded on J with essential supremum

kukL1 = ess sup
t2J

ju (t)j = inf fC � 0 : ju (t)j � C for a.e. tg :

De�nition 1.3 Let 
 be a open set of Rn, we di�ne the Sobolev space Wm;p (
;R)
by

Wm;p (
;R) = fu 2 Lp (
;R) : D�u 2 Lp (
;R) for 0 � j�j � mg

where D� is the weak (or distributional) partial derivative. Wm;p (
;R) is a
Banach space equipped with the norm

kukm;p =

0@ X
0�j�j�m

kD�ukpp

1A 1
p

if 0 � p <1;

kukm;1 = max
0�j�j�m

kD�ukL1 :

In particular, if p = 2, we denote by Hm (
;R) to Wm;2 (
;R) (the space of
square-integrable functions) which is a Hilbert space with inner product
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(u; v)m =
X

0�j�j�m

(D�u;D�v) ;

where

(u; v) =

Z
J

u (t) v (t) dt

is the inner product in L2 (
) :

If u = 0 on @J = f0; Tg ; for all u 2 Hm (
;R), then we write Hm
0 (
;R) instead of

Hm (
;R) :

Some inequalities associated with these concepts are found in section 1.4.

De�nition 1.4 A function u : J ! R is said absolutly continuous on J if for all
� > 0; thre exists a number �� > 0 such that; for all �nite partition [ai; bi]

p
i=1 in

J; then
pX
i=1

(bi � ai) < �� implies that
pX
i=1

ju (bi)� u (ai)j < �:

We denote by AC (J;R) (or AC1 (J;R)) the space of all absolutely continuous func-
tions de�ned on J . It is known that AC (J;R) coincides with the space of
primitives of Lebesgue summable functions:

u 2 AC (J;R)() u (t) = c+

tZ
0

� (s) ds; � 2 L1 (J;R) ; (1.1)

and therefore an absolutely continuous function u has a summable derivative

u
0
(t) = � (t) almost everywhere on J . Thus (1.1) yields

u
0
(t) = � (t) and c = u (0) :

De�nition 1.5 For n 2 N; we denote byACn (J;R) the space of functions u : J ! R
which have continuous derivatives up to order n � 1 on J such that u(n�1)
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belongs to AC (J;R) :

ACn (J;R) =
�
u 2 Cn�1 (J;R) : u(n�1) 2 AC (J;R)

	
=

�
u 2 Cn�1 (J;R) : u(n) 2 L1 (J;R)

	
:

The space ACn (J;R) consists of those and only those functions u which can
be represented in the form

u (t) =
n�1X
k=0

ckt
k +

�
In0+�

�
(t) ; (1.2)

where � 2 L1 (J;R) ; ck (k = 0; 1; :::; n� 1) 2 R, and

�
In0+�

�
(t) =

1

(n� 1)!

tZ
0

(t� s)n�1� (s) d� :

It follows from (1.2) that

� (t) = u(n) (t) ; ck =
u(k) (0)

k!
(k = 0; 1; :::; n� 1) :

For more details aboutAC (J;R) andACn (J;R) ; see eg. the book of Kolmogorov
and Fomin ([50], p.338).

1.2 Special functions

We give here some information on the gamma function, beta function and Mittag-

Le­ er function, which play moste important role in the theory of di¤erentiation of

arbitrary order and in the theory of fractional di¤erential equations. They represent

a generalizations of some usual functions.

De�nition 1.6 (Gamma function):
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The gamma function � (:) is de�ned by the integral

8z 2 R�+ : � (z) =
1Z
0

e�ttz�1dt;

which possesses the following basic properties

z� (z) = � (z + 1) ;

and for every integer n � 0, we have

n! = � (n+ 1) :

Farthermore

� (z) =
� (z + n)

z (z + 1) (z + 2) ::: (z + n� 1) ; z > �n; n = 1; :::; z 6= 0;�1;�2; :::

Clearly, Gamma function is analytic except for z = 0; 1; 2; ::: which are repres-

ent simple poles.

De�nition 1.7 ( Beta function)

The beta function B (:; :) is de�ned for all p; q � 0 by:

B (p; q) =

1Z
0

sp�1 (1� s)q�1 ds:

The functions � (:) and B (:; :) are related by the formula

B (p; q) =
� (p) � (q)

� (p+ q)
:

To prove this relationship we use the Laplace transform, see [49]:
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De�nition 1.8 ( Mittag-Le­ er function)

For � > 0 and z 2 R; the one parameter Mittag-Le­ er function is de�ned by

E� (z) =
1X
k=0

zk

� (�k + 1)
;

where it was introduced by Mittag-Le­ er [65].

For � > 0; � > 0, we de�ne the two parameter Mittag-Le­ er function by

E�;� (z) =

1X
k=0

zk

� (�k + �)
;

in particular,

E1;1 (z) = e
z and E2;1 (z) = cosh

�p
z
�
;

and

E�;1 (z) = E� (z) :

1.3 Fractional integrales and derivatives

In this section, some approaches to the generalization of the notion of di¤erentiation

and integration are considered (see for instence [44, 49, 64, 72]).

De�nition 1.9 (Grunwald-Letnikov fractional derivative)

The Grunwald-Letnikov fractional derivative of the function u of order � � 0 is

de�ned by

GLD�
au (t) = lim

h!0+

1

h�

[(t�a)=h]X
k=0

(�1)k (C�k f (t� kh)) :

De�nition 1.10 (Cauchy formula)
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The Cauchy formula of nth integral of a locally integrable function u on R+ is given
by

Inu (t) =
1

(n� 1)!

tZ
0

(t� s)n�1 u (s) ds;

De�nition 1.11 (Riemann-Liouville fractional integral)

The right-side(left-side resp.) Riemann-Liouville fractional integral of the function

u 2 L1 [0; T ] of order � � 0 is de�ned by

I�0+u (t) =
1

� (�)

tZ
0

(t� s)��1 u (s) ds;

I�T�u (t) =
1

� (�)

TZ
t

(s� t)��1 u (s) ds;

resp., where t 2 [0; T ] :

Riemann-Liouville fractional derivative are de�ned depending on their fractional

integral and integer order derivative as follows.

De�nition 1.12 (Riemann-Liouville fractional derivative)

The right-side(left-side resp.) Riemann-Liouville fractional derivative of the func-

tion u of order � 2 (n� 1; n] is given by

RLD�
0+u (t) =

dn

dtn
�
In��0+ u (t)

�
=

1

� (n� �)

�
d

dt

�n tZ
0

(t� s)n���1 u (s) ds;
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RLD�
T�u (t) =

�
� d
dt

�n �
In��T� u (t)

�
=

1

� (n� �)

�
� d
dt

�n TZ
t

(s� t)n���1 u (s) ds;

resp.

De�nition 1.13 (Caputo fractional derivative)

The left-side(right-side resp.) Caputo fractional derivatives of the function u 2
ACn [0; T ] of order � 2 (n� 1; n] is de�ned by

CD�
0+u (t) = I

n��
0+

�
u(n) (t)

�
=

1

� (n� �)

tZ
0

(t� s)n���1 u(n) (s) d� ;

CD�
T�u (t) = I

n��
T�

�
u(n) (t)

�
=

1

� (n� �)

TZ
t

(s� t)n���1 u(n) (s) d� ;

resp.

Remark 1.1 Fractional integrals and fractional derivatives can themselves be ex-
tended from the case of a �nite interval to the case of half-axes or axes.

Let�s now consider some properties of the Riemann-Liouville and Caputo frac-

tional integral and derivatives. In particular, we are interested by the left-side frac-

tional derivatives and integrals. Farthermore, we denote in the rest of this thesis

only by I�; D�;C D� instead I�0+;
RLD�

0+ and
CD�

0+ resp.

Lemma 1.1 ( Relation between R-L and Caputo derivatives)

Let n� 1 < � � n: If the function u 2 Cn [0; T ] ; then

CD�u (t) = D�u (t)�
nX
k=0

u(k) (0)

� (k � �+ 1)t
k��:
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Lemma 1.2 (Linearity and monotony)

� Fractional operators I�; D� and CD� are linears.

� Operator I� is monotone.

Lemma 1.3 (Boundness of fractional integral)

Fractional operator I� is bounded on Lp (0; T ), that is

kI�ukp � K kukp ; K =
T�

� (�+ 1)
:

Lemma 1.4 For �; � � 0 and u 2 L1 ([a; b]), we have

I�I�u (t) = I�I�u (t) = I�+�u (t) ;

D�I�u (t) = u (t) ;

CD�I�u (t) = u (t) ;

also, for � > � > 0 and u 2 L1 ([a; b]), we have

D�I�u (t) = I���u (t) :

Lemma 1.5 (examples of fractional integral and derivative for power functions, see
eg.[49])

If � � 0; � > 0; then
I�t��1 =

� (�)

� (� + �)
t�+��1; � > 0;

D�t��1 =
� (�)

� (� � �)t
����1; � � 0;

CD�t��1 =
� (�)

� (� � �)t
��1; � � [�] ;
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Lemma 1.6 Let u 2 L1 (a; b) and n� 1 � � < n with D�u 2 L1 (a; b) ; then

I�D�u (t) = u (t)+c1t
��1+c2t

��2+c3t
��3+:::+cnt

��n; for ci 2 R; i = 1; 2; :::; n;

Lemma 1.7 Let u 2 ACn�1 ([a; b]) and n� 1 � � < n with CD�u 2 L1 (a; b) ; then

I�CD�u (t) = u (t) + c0 + c1t+ :::+ cn�1t
n�1; ci 2 R; i = 0; 2; :::; n� 1;

where n = [�] + 1; [�] denotes the integer part of �:

De�nition 1.14 The Laplace transform of a function � of a real variable t 2 R+ is
de�ned by

(L�) (s) = L [� (t)] (s) =

1Z
0

e�st� (t) dt; (s 2 C) :

De�nition 1.15 The inverse Laplace transform is given for x 2 R+ by the formula

�
L�1g

�
(x) = L�1 [g (s)] (x) = 1

2�i

1Z
�1

esxg (s) ds:

The direct and inverse Laplace transforms are inverse to each other

L�1L� = � and LL�1g = g:

Lemma 1.8 Let �; � > 0: The Laplace transform of the Riemann-Liouville frac-

tional derivative D�u (t) and the power function t 7! t� are given respectively

by

(i) LfD�u (t) ; zg = z�U (z)�
n�1X
i=0

zi [D��i�1u (t)]t=0 ;
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(ii) L
�
t�; z

	
= � (� + 1) z�(�+1);

where U (z) denotes the Laplace transforme of u (t). n = [�] + 1:

More details for Laplace transform and its applications in fractional calculus

theory can be obtained in [72].

1.4 Functional tools

Some useful concepts of functional analysis are presented below:

De�nition 1.16 � : J � E �! E is called a Carathéodory function if

i t 7�! � (t; u) is measurable for every u 2 E,

ii u 7�! � (t; u) is continuous for almost everywhere t 2 J .

De�nition 1.17 Let I be a measurable subset of R, g : J � R ! R be a function
satis�es the condition of Carathéodory. By a Nemytskii operator we mean the

mapping Ng taking a function u to the function

Ngu(t) = g(t; u(t)); t 2 J; u 2 R:

The continuity of the operator Ng is concerned in the following Lemma.

Lemma 1.9 Let J be a measurable subset of R, g : J�R! R to be a Carathéodory
function. Let u 2 Lp (J) ; p 2 [1;1): If there exist a function b 2 Lr (J) ; r 2
[1;1), and a constant c > 0 such that

jg (t; u)j � b (t) + c juj
p
r ; a:e:t 2 J; u 2 R;

then the Nemytskii operator

Ngu(t) = f (t; u(t)) ;



27

is continuous and bounded from Lp (J) to Lr (J) ; that is

kNgukLr(J) � kbkLr(J) + c kuk
p
r

Lp(J) :

Here, we say that the g is (p; r)�Carathéodory. For more details about Ne-
mytski operator and its properties, we refer, eg. to [73].

This result can be easily carried over to vector functions u = (u1; :::; ud) with com-

ponents uj 2 Lpj and to functions f : J � Rd ! R. In this case, we have(see

[17])

jg (t; u)j � b (t) + c
dX
j=1

jujj
pj
r ; a:e:t 2 J; u 2 Rd:

Notation : We set (�hf) (x) = f (x+ h) :

Lemma 1.10 (Compactness Criteria in Lp)

Let 
 be a bounded domain in Rn. A set F of functions f 2 Lp (
) (1 � p <1) has
a compact closure in Lp (
) if and only if there is equicontinuous, i.e.

lim
jhj!0

k�hf � fkp = 0;

uniformly in f 2 F .

For more details see [2, 20, 66].

De�nition 1.18 (Weak convergence)

Let E be a Banach space, a sequence un in E converges weakly to u if f (un)

converges to f (u) for every f 2 E�: A sequence f in E� converges weakly��
to f if fn(u) converges to f(u) for every u 2 E.

To distinguish notations, one writes un ! u for convergence in norm, un * u

for weak convergence, and un
�
* u for weak�� convergence.

Theorem 1.1 (Weak compactness, [76])
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Let E be a separable Banach space and let fn be a bounded sequence in E�. Then

fn has a weakly�� convergent subsequence.

Theorem 1.2 (Minty-Browder, [35])

Let 
 be a bounded domain in RN and f : (0; T ) � 
 ! R be monotone in the
second variable, i.e.

(f (t; u)� f (t; v) ; u� v) � 0 for u; v 2 
;

and

un ! u weakly in Lp (
) ;

d (t; x; un)! � weakly in Lq (
) ;

lim sup
n!1

Z



d (t; x; un)undx �
Z



�udx:

Then

� = d (t; x; u) :

Lemma 1.11 (Holder�s inequality)

Let 1 � p � 1 and let p
0
denote the conjugate exponent de�ned by

p
0
=

p

p� 1 ; that is
1

p
+
1

p0
= 1:

If u 2 Lp (J;R) and v 2 Lp
0
(J;R) ; then uv 2 L1 (J;R) ; and

Z
J

ju (t) v (t)j dt � kukp kvkp0 :

Lemma 1.12 (Minkowski�s Inequality)
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If 1 � p <1; then
ku+ vkp � kukp + kvkp :

Lemma 1.13 (Cauchy-Schwartz inequality)

Let u; v belong to L2 (I) equipped with the inner product (:; :) and the norm k:k2,
then

(u; v) � kuk2 kvk2 :

Lemma 1.14 (��Young�s inequality)

Let a; b � 0; then for all � > 0; we have

2ab � �a2 + 1
�
b2:

Lemma 1.15 (Poincaré�s Inequality)

For all u 2 H1
0 (J;R), there exists a constant CJ (depending on J) such that

kuk2 � CJ kruk2 :

Lemma 1.16 (Green formula)

If u 2 H2 (J) and v 2 H1 (J) ; we have

Z
J

(4f) gdx = �
Z
J

rfrgdx+
Z
@J

r (f�) g:

Lemma 1.17 (Discrete Gronwall Lemma)

Let (un) ; (fn) and (gn) are nonnegative sequences and

un � fn +
X
0�k�n

gkuk for n � 0;
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then

un � fn +
X
0�k�n

fkgk exp

 X
k<j<n

gj

!
for n � 0:

1.5 Fixed point theorems

In the following, we are interested by giving some �xed point theorems with related

notions:

De�nition 1.19 For a mapping A from a set E into itself, an element u of E is a

�xed point of A if A(u) = u.

De�nition 1.20 Let E be a Banach space with a norm k:k : A mapping A : E ! E

is called ��Lipschitzian, if there exists a continuous nondecreasing function
� : R+ ! R+ satisfying

kAu� Avk � � (ku� vk) ;

for all u; v 2 E with� (0) = 0: The function� is sometimes called a��function
of A on E.

In particular:

� If � (r) = kr for some k > 0; A is a Lipschitz mapping with a Lipschitzian

constant k(k-Lipschitzian): In this case if k < 1 then A is called a contraction

mapping with a contraction constant k.

� If � (r) < r; A is called a nonlinear contraction mapping (��contraction).

De�nition 1.21 [30]A function f : [a; b]�R! R is said to be generalized Lipshitz,
if there exists a positive function �, such that

jf (t; u)� f (t; v)j � � (t) ju� vj ;

for all t 2 [a; b] ; u; v 2 R: � is called the Lipschitz function of f .
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De�nition 1.22 Let E and F two Banach spaces and A be an application de�ned
on E in F . We say that A is completely continuous if it is continuous and

transforms any bounded of E into a relatively compact set in F . A is called

compact if A(E) is relatively compact in F .

Lemma 1.17 [82](Ascoli-Arzelà Theorem)

Let 
 be a bounded subset of Rn: Let M a subset of C
�


�
the space of continuous

functions on 
, Then M is relatively compact if and only if

� M is unifomely bounded, i.e. kuk � c; for all u 2M and c > 0 is a �xed number.

� M is equicontinuous, i.e.

8� > 0;9� > 0; if
���t� t0��� < � and u 2M )

���u (t)� u�t0���� < �:
We present now, a more generally version of Ascoli-Arzelà Theorem in the case

when the set 
 is unbounded.

De�nition 1.23 Let h : R+ ! [1;+1) be a strictly increasing continuous function
with

h(0) = 1; h(t)!1 as t!1; h(s)h(t� s) � h(t);

for all 0 � s � t � 1: We introduce the space

E =

�
u 2 C [0;+1) : sup

t�0

ju(t)j
h(t)

<1
�
;

which is a Banach space equipped with the norm kuk = sup
t�0

ju(t)j
h(t)

: For more properties

of this Banach space, see [23, 51].

In order to prove the compactness in E, we give the following modi�ed compact-

ness criterion.

Lemma 1.18 [51]LetM be a subset of the Banach space E. ThenM is relatively

compact in E if the following conditions are satis�ed:
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i)
�
u
h
: u 2M

	
is uniformly bounded;

ii)
�
u
h
: u 2M

	
is equicontinuous on any compact interval of R+;

iii)
�
u
h
: u 2M

	
is equiconvergent at in�nity. i.e. for any given � > 0, there exists

a T0 > 0 such that for all u 2M and t1; t2 > T0, it holds���� u(t1)h (t1)
� u(t2)

h (t2)

���� < �:
Theorem 1.2 (Banach contraction principle [79, 82])

Let E be a Banach space: If A : E ! E is a contraction, then A has a unique �xed

point in E.

Theorem 1.3 (Schauder�s �xed point theorem [79, 82])

LetM be a closed convex subset of a Banach space E: If A :M!M is continuous

and the set A(M) is compact, then A has a �xed point inM:

Theorem 1.4 (Krasnoselskii �xed point theorem [79, 82])

If M is a nonempty bounded; closed and convex subset of a Banach space E; A

and B two operators de�ned onM with values in E such as:

i) Au+Bv 2M, for all u; v 2M:

ii) A is continuous and compact,

iii) B is a contraction,

then there exists w 2M such as: w = Aw +Bw:
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2.1 FODE with initial conditions

2.1.1 Position of problem

Recently, the study of fractional di¤erential equations on in�nite domain has begun

to emerge and evolve extentively. The interest of authors in this study is mainly

due to the excitement inspired by the adoption of unusual Banach spaces as well as

some other concepts which have been extended to the case of unbounded interval as

compactness criteria and others, we refer for example to the papers [18, 36, 58, 83]

and the references therein.

Based on these papers and others, we are interested in this subsection in the study

of the existence and uniqueness for the following inital value problem of nonlinear

fractional di¤erential equations

CD�u(t) = f (t; u(t)) ; t � 0; (2.1)

u(0) = u0; u
0(0) = u1; (2.2)

where 1 < � < 2, u0; u1 2 R, R+ = [0;+1) ; f : R+ � R ! R is a continuous

function; CD� is the standard Caputo fractional derivative.

We will mainly discuss the existence and uniqueness of the nonlinear FDE of

order �(1 < � < 2) given by equations (2.1) and (2.2). For satisfy this aim, we

�rst transform the fractional di¤erential equation into a �rst-order ordinary di¤er-

ential equation with a fractional integral perturbation, then by using the means of

the variation of constants formula and some analytical skills, we obtain the equival-

ent integral equations of (2.1)-(2.2). Furthermore, we investigate the existence and

uniqueness of nonlinear FDEs (2.1)-(2.2) by using the contraction mapping principle.

2.1.2 Corresponding integral equation

In the following, we give the integral equation coresponding to the FODE (2.1)-(2.2)

using the concepts of fractional calculus given in Chapter one. We start by de�ning

the following Banach space:
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Let h : R+ ! [1;+1) be a strictly increasing continuous function with

h(0) = 1; h(t)!1 as t!1; h(s)h(t� s) � h(t);

for all 0 � s � t � 1: Let

E =

�
u(t) 2 C [0;+1) : sup

t�0

ju(t)j
h(t)

<1
�
.

Then E is a Banach space equipped with the norm kuk = sup
t�0

ju(t)j
h(t)

: For more prop-

erties of this Banach space, see [23].

Lemma 2.1 Let y 2 C [0;+1) : Then u is a solution of the Cauchy type problem(
CD�u(t) = y(t); t 2 R+; 1 < � < 2;

u(0) = u0; u
0(0) = u1;

(2.3)

if and only if u is a solution of the Cauchy type problem(
u
0
(t) = I��1y(t) + u1;

u(0) = u0:
(2.4)

Proof. (i) Let u 2 C [0;+1) be a solution of the problem (2.3).

For any t 2 R+; we have

CD�u(t) =
�
CD��1D1u

�
(t) = y(t):

According to Lemma 1:7, we have

u0(t) = c+ I��1y(t) = I��1y(t) + u1;

which means that u is a solution of the problem (2.4).

(ii) Let u be a solution of the problem (2.4).

For any t 2 R+, it is easy to see that
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CD�u(t) =C D��1u0(t) =
�
CD��1I��1y

�
(t) +C D��1u1 = y(t):

Besides, note that y 2 C [0;+1) ; we have u0(0) = I��1y(0) + u1 = u1

Lemma 2.1.2 shows that the system (2.1)-(2.2) is equivalent to the system

u0(t) =
1

�(�� 1)

tZ
0

(t� s)��2f(s; u(s))ds+ u1; (2.5)

u(0) = u0:

Lemma 2.2 Let k 2 R satis�es that

e�kt=h(t) 2 C [0;+1) \ L1 [0;+1) : (2.6)

Then (2.5) can be equivalently written as

u(t) = u0e
�kt +

1� e�kt
k

u1 + k

tZ
0

e�k(t��)u(�)d� (2.7)

+
1

�(�� 1)

tZ
0

tZ
�

e�k(t�s)(s� �)��2dsf(� ; u(�))d� :

Proof. It is clear that (2.5) can be written as follow

u0(t) + ku(t) = ku(t) +
1

�(�� 1)

tZ
0

(t� s)��2f(s; u(s))ds+ u1; (2.8)

u(0) = u0:

By the variation of constants formula, we have

u(t) = u0e
�kt
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+e�kt
tZ
0

24ku(s) + 1

�(�� 1)

sZ
0

(s� �)��2 f(� ; u(�))d� + u1

35 eksds
= u0e

�kt + e�kt
tZ
0

ku(s)eksds

+
1

�(�� 1)

tZ
0

sZ
0

e�k(t�s) (s� �)��2 f(� ; u(�))dsd� + u1e�kt
tZ
0

eksds

= u0e
�kt + k

tZ
0

e�k(t�s)u(s)ds

+
1

�(�� 1)

tZ
0

sZ
0

e�k(t�s) (s� �)��2 f(� ; u(�))dsd� + u1e�kt
tZ
0

eksds

so

u(t) = u0e
�kt +

1� e�kt
k

u1 + k

tZ
0

e�k(t��)u(�)d�

+
1

�(�� 1)

tZ
0

tZ
�

e�k(t�s)(s� �)��2dsf(� ; u(�))d� :

Conversely, it is clear that

�
ektu(t)

�0
= (u0(t) + ku(t)) ekt;

using this fact we get

(u0(t) + ku(t)) ekt =

24u0 + ekt � 1
k

u1 + k

tZ
0

ek�u(�)d�
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+
1

�(�� 1)

tZ
0

tZ
�

eks(s� �)��2dsf(� ; u(�))d�

350

= ektu1 + ke
ktu(t) +

24 tZ
0

ek�I��1f(� ; u(�))d�

350

= ekt
�
u1 + I

��1f(t; u(t)) + ku(t)
�
;

Farthermore, if (2.7) holds, we have u(0) = u0:

From the argument above, we get that the system (2.1)-(2.2) can be equivalently

written as (2.7). Then our following study will focus on the integral equation (2.7)

2.1.3 Uniqueness and existence result

Our result based on the Banach contraction principle (Theorem 1:2). We de�ne the

nonlinear operator A : E �! E by

Au(t) = u0e
�kt +

1� e�kt
k

u1 + k

tZ
0

e�k(t��)u(�)d�

+
1

�(�� 1)

tZ
0

tZ
�

e�k(t�s)(s� �)��2dsf(� ; u(�))d� ; (2.9)

for all t 2 R+ and k 2 R:
We shall investigate the existence and uniqueness of �xed point of the operator

A:

Theorem 2.1 Assume that (2.6) holds and

(H1) There exists a constant l > 0 and a bounded function � : [0;1)! [0;1) so
that if juj ; jvj � l then
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(i)

jf(t; u)� f(t; v)j � � (t) ju� vj ; (2.10)

for all t 2 R+, and

(ii) There exists a constant c 2 (0; 1) which satis�es

jkj
1Z
0

e�kt

h(t)
dt+ sup

t�0

tZ
0

K (t� �)
h(t� �) � (�) d� � c (2.11)

where

K (t� �) =
(

1
�(��1)

R t
�
e�k(t�s)(s� �)��2ds; t � � ;

0; t � � :
(2.12)

Then the system (2.1)-(2.2) has a unique solution.

Proof. We claim that A : E ! E is a contraction mapping.

Let u; v 2 E; t � 0 and from (2.10), on gets����Au(t)h(t)
� Av(t)
h(t)

����
=

������k
tZ
0

e�k(t��)

h(t)
[u(�)� v (�)] d�

+

tZ
0

K (t� �)
h(t)

[f(� ; u(�))� f(� ; v(�))] d�

������
� jkj

tZ
0

e�k(t��)

h(t� �)
ju(�)� v(�)j

h(�)
d�

+

tZ
0

K (t� �)
h(t� �)

jf(� ; u(�))� f(� ; v(�))j
h (�)

d�
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� jkj
tZ
0

e�k(t��)

h(t� �)
ju(�)� v(�)j

h(�)
d� +

tZ
0

K (t� �)
h(t� �) � (�)

ju(�)� v(�)j
h (�)

d�

� jkj sup
t�0

�
ju(�)� v(�)j

h(�)

� tZ
0

e�k(t��)

h(t� �)d�

+sup
t�0

�
ju(�)� v(�)j

h (�)

� tZ
0

K (t� �)
h(t� �) � (�) d�

� jkj ku� vk
tZ
0

e�k(t��)

h(t� �)d� + ku� vk
tZ
0

K (�)

h(u)
� (u) du

�

24jkj tZ
0

e�k(t�u)

h(t� u)du+
tZ
0

K (t� u)
h(t� u) � (u) du

35 ku� vk ;
then

kAu� Avk � c ku� vk ;

follows from (2.6) and (2.11). So, A is a contraction mapping from E into E.

Hence, using the contraction principle mapping and from Theorem 2:1, the op-

erator A given by (2.9) has a unique �xed point. Then, the system (2.1)-(2.2) has a

unique solution

2.1.4 An example

Let us consider the following nonlinear fractional initial value problem(
CD

3
2u(t) = ! (t)

�
1+�u+sinu

e�t

�
; t � 0;

u(0) = u0 2 R; u0(0) = u1 2 R;
(2.13)

f (t) = ! (t)
�
1+�u+sinu

e�t

�
; ! (t) = �

�1
2

1
�+t2

; � > 0; � > �1: Let � > 1; k 2 R; h(t) = e�t

and suppose that 0 < jkj � ��1
2
; clearly that (2.6) holds and jkj

R1
0

e�kt

h(t)
dt � jkj

�+k
;

then the Banach space is
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E� =

�
u(t) 2 C [0;+1) : sup

t�0
ju(t)j =e�t <1

�
;

equipped with the norm kuk = supt�0
ju(t)j
e�t
: Clearly

jf (t; u)� f (t; v)j � � (t) ju� vj ;

where � (t) = (1 + �)! (t) for all t � 0: Morover

K(t� �)
e�(t��)

=
1

�(1=2)

tZ
�

1

e(�+k)(t�s)
(s� �)�1=2

e�(s��)
ds

�
R t
�
(s��)�1=2
e�(s��)

ds

�(1=2)
=

R t��
0

��1=2

e��
d�

�(1=2)
� �1=2;

for all t � 0: Also, if we choose � � (1 + �)�1=2� (�+ k) then for all t � 0 we get

tZ
0

K(t� �)
h(t� �) � (�) d�

= (1 + �)�1=2��1=2
tZ
0

1

�+ � 2
d� = (1 + �)�1=2��3=2

tZ
0

1

1 +
�
��

�1
2

�2d�

= (1 + �)�1=2��1
t�
�1
2Z

0

dz

1 + z2
= (1 + �)�1=2��1 arctan

�
t�

�1
2

�
� (1 + �)�1=2��1

�

2
� 1

2 (�+ k)
< 1� jkj

�+ k
:

Then there exists c = jkj
�+k

+ 1
2(�+k)

< 1 which satis�es kAu� Avk � c ku� vk : So,
the system 2.13 has a unique solution follows from Theorem 2:1.
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2.2 Delay FODE with mixed derivatives

2.2.1 Previous works, Position of problem

To the best of our knowledge, the use of mixed fractional derivative in fractional dif-

ferential equations with delay is still not su¢ ciently generalized as the other import-

ant kinds of fractional di¤erential equations, where we will interest in this subsection

to study this type of fractional di¤erential equations. Beside, delay fractional di¤er-

ential equations have been studied extensively in the last decades and by di¤erent

methods as �xed point theorems, upper and lower solution method, spectral theory

and others. For some recent contributions in fractional boundary value problems of

fractional di¤erential equations with delay, we can see the papers of Benchohra et

al. [15], Agarwal [4], Nouri [68], Bachir et al. [6] and the references therein.

In 2008, Benchohra et al. [15], investigated the existence of solutions for the

following Riemann-Liouville fractional order functional di¤erential equations with

in�nite delay using the Leray-Schauder �xed point theorem.8<:D
�[u(t)� g(t; u (t� r))] = f(t; u (t� r)); t 2 J = [0; T ]; 0 < � � 1;

u (t) = � (t) ; t 2 [�1; 0] :

Agarwal et al. [4], studied the initial value problem of fractional neutral Caputo

fractional derivative8<:
CD�[u(t)� g(t; u (t� r))] = f(t; u (t� r)); t 2 J = [0; T ]; 0 < � � 1;

u (t) = � 2 B;

and established the existence results of solution of this problem by using Krasnosel-

skii�s �xed point theorem.

Nouri et al. [68], by utilizing the Banach �xed point theorem and Krasnosel-

skii�s �xed point theorem, discussed the existence and uniqueness of solutions to the
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following semilinear Caputo type neutral fractional di¤erential equations8<:
CD�[u(t)� g(t; u (t� r))] = f(t; u (t� r) ; Ku (t)); t 2 J = [0; T ];

u (t) = � 2 B;

where 0 < � � 1:

Farthermore, there are some works about delay fractional di¤erential equations

with sequential fractional derivative. In [6], Bashir et al. studied the qualitative

theory of the following boundary value problem8>>><>>>:
D�
�
D�u(t)� g (t; u (t� r))

�
= f(t; u (t� r)); t 2 [1; b];

u(t) = �(t); t 2 [1� r; 1];

D�u(1) = � 2 R;

where D�; D� are the Caputo-Hadamard fractional derivatives, 0 < �; � < 1:

On the other hand, in 2017, Guezane-Lakoud et al. [55]; studied the following

mixed fractional boundary value problem8<:�
CD�

1�D
�
0+u(t) + f(t; u (t)) = 0; t 2 [0; 1];

u(0) = u
0
(0) = u (1) = 0;

where 0 < � � 1; 1 < � � 2;C D�
1� denotes the right Caputo derivative and D

�
0+

denotes the left Riemann-Liouville.

For stability of fractional di¤erential equations, Ge and Kou [36], by utilizing the

Krasnoselskii�s �xed point theorem, discussed the stability and assymptotic stability

of zero solution to the following Caputo type fractional di¤erential equations8<:
CD�u(t) = f(t; u (t)); t � 0; 1 < � � 2;

u (0) = u0; u
0
(0) = u1:
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Farthermore, In [18], Boulares et al. discussed the stability and assymptotic stability

of of zero solution of the following boundary value problem with delay8<:
CD�u(t) = f(t; u (t) ; (t� r (t))) +C D��1g(t; u (t� r (t))); t � 0;

u(t) = �(t); t 2 [m0; 0]; u
0
(0) = u1: 1 < � < 2:

Motivated and inspired by the works above and the papers ([37], [57] , [59]) and the

references therein, we give su¢ cient conditions to investigate the stability of trivial

solution for the following IVP of mixed Riemann-Liouville and Caputo fractional

di¤erential equation with delay on undounded interval8>>>><>>>>:
D�[CD�u(t)� g(t; u (t� r))] = f(t; u (t� r)); t � 0;

u (t) = � (t) ; t 2 [�r; 0]

lim
t!0
t1�� CD�u(t) = 0; u0(0) = u0,

(2.14)

where D�;C D� are the left Riemann Liouville and left Caputo fractional derivatives

respectively, 0 < � � 1, 1 < � � 2; f; g : R+�R! R are given continuous functions
with f(t; 0) = g(t; 0) = 0; � 2 C([�r; 0];R) is continuous function:

2.2.2 Study space, integral equation

In this subsection, we present a suitable Banach space for investigate in which the

qualitative theory of problem (2.14), then we transforme it in a �xed point problem

to show the required end.

Let C� be the Banach space of all continuous functions de�ned on [�r;+1) with
the norm

kuk� = sup
t��r

�
e��t ju (t)j

	
;

for all positive real number � > 1:

Lemma 2.3 Problem (2.14) is equivalent to the following Caputo type fractional
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di¤erential equation with delay8>>><>>>:
CD�u(t) = I�f(t; u (t� r)) + g(t; u (t� r)); t � 0;

u (t) = � (t) ; t 2 [�r; 0] ;

u
0
(0) = u0

(2.15)

Proof. The �rst equation of (2.14) can be written as

CD�u(t) = I�f(t; u (t� r)) + g(t; u (t� r)) + c0t��1;

using condition lim
t!0
t1�� CD�u(t) = 0, we get c0 = 0: Then we obtain the required

result

Lemma 2.4 Let f; g are continuous functions. Then u is a solution of the problem
(2.15) if and only if u is a solution of the delay Cauchy type problem8<:u

0
(t) = I�+��1f(t; u (t� r)) + I��1g(t; u (t� r)) + u0; t � 0;

u (t) = � (t) ; t 2 [�r; 0] :
(2.16)

Proof. Let u 2 C [�r;+1) be a solution of the problem (2.15), for any t � 0

and for � 2 (1; 2], we have

CD�u(t) =
�
CD��1D1u

�
(t) = I�f(t; u (t� r)) + g(t; u (t� r)):

It is obvious that

u0(t) = I��1 [I�f(t; u (t� r)) + g(t; u (t� r))] + u0;

due to the condition u
0
(0) = u0;

which means that u is a solution of the problem (2.16).

Conversly, let u be a solution of the problem (2.16).
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Also, for any t � 0, it is easy to see that

CD�u(t) = CD��1u0(t)

= CD��1 �I�+��1f(t; u (t� r)) + I��1g(t; u (t� r))�+C D��1u0

= I�f(t; u (t� r)) + g(t; u (t� r));

Also, we have u0(0) = u0

Lemma 2.5 Let k 2 Rn f0g satis�es that jkj � ��1
2
; clearly: �+ k > 0: Then (2.16)

can be equivalently written as

u (t) = � (0) e�kt +
1� e�kt
k

u0 + k

tZ
0

e�k(t�s)u(s)ds

+
1

�(�+ � � 1)

tZ
0

tZ
�

e�k(t�s) (s� �)�+��2 dsf(� ; u(� � r))d�

+
1

�(� � 1)

tZ
0

tZ
�

e�k(t�s) (s� �)��2 dsg(� ; u(� � r))d� : (2.17)

Proof. It is clear that (2.16) can be written as follow8>>>>>>>>>>>><>>>>>>>>>>>>:

u0(t) + ku(t) = ku(t) + 1
�(�+��1)

tZ
0

(t� s)�+��2f(s; u(s� r))ds

+ 1
�(��1)

tZ
0

(t� s)��2g(s; u(s� r))ds+ u0;

u (t) = � (t) ; t 2 [�� ; 0] :
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By the variation of constants formula, we have

u(t) = � (0) e�kt + e�kt

�
tZ
0

2664ku(s) + 1

�(�+ � � 1)

sZ
0

(s� �)�+��2f(� ; u(� � r))d�

+
1

�(� � 1)

sZ
0

(s� �)��2g(� ; u(� � r))d� + u0

3775 eksds;

= �(0) e�kt + k

tZ
0

e�k(t�s)u(s)ds

+
1

�(�+ � � 1)

tZ
0

tZ
�

e�k(t�s) (s� �)�+��2 dsf(� ; u(� � r))d�

+
1

�(� � 1)

tZ
0

tZ
�

e�k(t�s) (s� �)��2 dsg(� ; u(� � r))d� + 1� e
�kt

k
u0:

Farthermore, it is clear that

�
ektu(t)

�0
= (u0(t) + ku(t)) ekt;

using this fact, we get

(u0(t) + ku(t)) ekt
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=

2664� (0) + k
tZ
0

eksu(s)ds+
1

�(�+ � � 1)

tZ
0

tZ
�

eks(s� �)��2dsf(� ; u(� � r))d�

+
1

�(� � 1)

tZ
0

tZ
�

eks(s� �)��2dsg(� ; u(� � r))d� + e
kt � 1
k

u0

3775
0

= ektu0 + ke
ktu(t) +

2664
tZ
0

ek�I�+��1f(� ; u(� � r))d� +

tZ
0

ek�I��1g(� ; u(�))d�

3775
0

= ekt
�
u0 + I

�+��1f(t; u(t� r)) + I��1g(t; u(t� r)) + ku(t)
�
;

this means that

u0(t) = I�+��1f(t; u(t� r)) + I��1g(t; u(t� r)) + u0:

On the other hand, if (2.17) holds, we have u(0) = � (0) :

From the argument above, we get that the system (2.16) can be equivalently

written as (2.17)

2.2.3 Stability of solutions

The following de�nition is needed.

De�nition 2.1 The trivial solution u = 0 of (2.14) is said to be stable in Banach
space C�, if for every � > 0, there exists a � = �(�) > 0 such that j�(t)j+ju0j � �
implies that the solution u(t) = u(t;�; u0) exists for all t 2 [�r;+1) and
satis�es kxk � �.

Let us assume the following hypotheses:

(H2) f; g : I � Cr ! R are continuous functions.
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(H3) There exists a constant l > 0 and a bounded continuous function � (t) > 0

so that if juj ; jvj � l then

jg(t; u)� g(t; v)j � � (t) ju� vj ; for t 2 R+:

(H4) There exist a constant 
 > 0 and tow continuous functions � : R+ ! R+;	 :
(0; 
]! R+ such that

jf(t; e�(t�r)u)j � e�t� (t)	 (juj) ;

holds for all t � 0, 0 < juj � 
, where 	 is bounded nondecreasing function and

� 2 L1 ([0;1)) :
Now, we present the stability of trivial solution of system (2.14).

Theorem 2.2 Assume that (H2) � (H4) hold. Then the trivial solution u = 0

of (2.14) is stable in Banach space C�, provided that there exists constants

M1;M2 > 0 such that

	(z) sup
t�0

tZ
0

e��(t��)K (t� �) � (�) d� � zM2; for all z 2 (0; 
] ; and (2.18)

sup
t�0

tZ
0

e��(t��)H (t� �) � (�) d� �M1 < 1�
jkj
�+ k

�M2 < 1; (2.19)

where

K (t� �) =

8>>>>><>>>>>:
1

�(�+��1)

tZ
�

e�k(t�s)(s� �)�+��2ds; if t� � � 0;

0; if t� � � 0;
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and

H (t� �) =

8>>>>><>>>>>:
1

�(��1)

tZ
�

e�k(t�s)(s� �)��2ds; if t� � � 0;

0; if t� � � 0;

Proof. For any given � > 0, we �rst prove the existence of � > 0 such that

j�(t)j+ ju0j < � implies kuk � �:

Let 0 < � � jkj
jkj+2

h�
1�M1 �M2 � jkj

�+k

�
�
i
. Consider the non-empty closed convex

subset B� = fu 2 C�([�r;+1);R) : sup
t��r

ju (t)j � � for t � �r and u (t) = �(t) if

t 2 [�r; 0]g for any � > 0: We de�ne two mapping A;B : B� ! C�([�r;+1];R) by:

Au (t) =

8>>>>><>>>>>:
0; if t 2 [�r; 0];

k

tZ
0

e�k(t�s)u(s)ds+

tZ
0

K (t� �) f(� ; u(� � r))d� if t 2 I;
(2.20)

Bu(t) =

8>>>>><>>>>>:
�(t); if t 2 [�r; 0];

� (0) e�kt + 1�e�kt
k
u0 +

tZ
0

H (t� u) g(� ; u(� � r))d� if t 2 I:
(2.21)

Clearly, for u 2 B�; both Au and Bu are continuous functions on [�r;+1): Also,
for u 2 B�; for any t � 0; we have

e��t jAu(t)j

� jkj e��t
tZ
0

e�k(t�s) ju(s)j ds+

tZ
0

e��t jK (t� �)j jf(� ; u(� � r))j d�
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� jkj

tZ
0

e�(�+k)(t�s)
��e��su(s)�� ds

+

tZ
0

e��(t��) jK (t� �)j � (�)	
�
e��(��r) ju(� � r)j

�
d�

� jkj kuk�

1Z
0

e�(�+k)sds+

tZ
0

e��(t��) jK (t� �)j � (�)	
�
e��(��r) ju(� � r)j

�
d�

�
�
jkj
�+ k

+M2

�
� <1; (2.22)

e��t jBu(t)j

� j� (0)j e�(�+k)t + e
��t + e�(�+k)t

jkj ju0j+

tZ
0

e��tH (t� u) g(� ; u(� � r))d�

� j� (0)j+ 2 ju0jjkj +

tZ
0

e��(t��)H (t� u) � (�)
��e���u (�)�� d�

� j� (0)j+ 2 ju0jjkj +

8>><>>:
tZ
0

e��(t��)H (t� u) � (�) d�

9>>=>>; kuk�

� j� (0)j+ 2 ju0jjkj +M1� <1: (2.23)

Then AB� � C� and BB� � C�: Now we shall to prove that there exists at least one
�xed point of the operator A+ B. To this end, we divide the proof into three claims.

Claim 1: we show that Au + Bv 2 B� for all u; v 2 B�; from (2.22) and (2.23),

we get
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kAu+ Bvk� �
jkj+ 2
jkj � +

�
M1 +M2 +

jkj
�+ k

�
� � �; (2.24)

this means that Au+ Bv 2 B�; for all u; v 2 B�:

Claim 2: Obviously, A is continuous operator on C�, it remains to prove that

AB� is relatively compact in C�. In fact, from (2.24), we get that
�
e��tu(t) : u 2 B�

	
is uniformly bounded in C�. Moreover, for t � � ; we have

0 � lim
t!1

e��(t��)K (t� �)

� lim
t!1

1

�(�+ � � 1)

tZ
�

�
e�(�+k)(t�s)

� �
e��(s��)(s� �)�+��2

�
ds

= lim
t!1

1

�(�+ � � 1)

t��Z
0

�
e�(�+k)(t���s)

� �
e��ss�+��2

�
ds = 0 (2.25)

Together with the continuity of functions K and t 7�! e��t, we get that there exists

a constant M3 > 0 such that

e��(t��) jK (t� �)j �M3:

Also, for any �xed T0 > 0 and any t1; t2 2 [0; T0] ; t1 < t2; we have��e��t2Au (t2)� e��t1Au (t1)��
=

��������k
t2Z
0

e��t2e�k(t2�s)u(s)ds� k

t1Z
0

e��t1e�k(t1�s)u(s)ds

+

t2Z
0

e��t2K (t2 � �) f (� ; u(� � r)) d�
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�

t1Z
0

e��t1K (t1 � �) f (� ; u(� � r)) d�

��������
� jkj

t1Z
0

��e��t2e�k(t2�s) � e��t1e�k(t1�s)�� ju(s)j ds

+

t1Z
0

��e��t2K (t2 � �)� e��t1K (t1 � �)�� jf (� ; u(� � r))j d�

+ jkj

t2Z
t1

e��t2e�k(t2�s) ju(s)j ds+

t2Z
t1

e��t2K (t2 � �) jf (� ; u(� � r))j d�

� jkj

t1Z
0

��e�(�+k)(t2�s) � e�(�+k)(t1�s)�� ��e��su(s)�� ds

+

t1Z
0

��e��t2K (t2 � �)� e��t1K (t1 � �)�� e��� (�)	 �e��(��r) ju(� � r)j� d�

+

t2Z
t1

e��t2K (t2 � �) e��� (�)	
�
e��(��r) ju(� � r)j

�
d�

+ jkj

t2Z
t1

e�(�+k)(t2�s)
��e��su(s)�� ds

� R jkj
�+ k

�
e�(�+k)t1 � e�(�+k)t2

�
+

8>><>>:
t1Z
0

��e��(t2��)K (t2 � �)� e��(t1��)K (t1 � �)�� � (�) d�
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+M3

t2Z
t1

� (�) d�

9>>=>>;	(�)
! 0 as t2 ! t1;

this means that
�
e��tu(t) : u 2 B�

	
is equicontinuous on any compact interval of R+;

it remains to show that the set
�
e��tu(t) : u 2 B�

	
is equiconvergent at in�nity. In

fact, for any �1 > 0 such that � � �+k
6jkj �1; there exists a L > 0 such that

M3	(�)

1Z
L

� (�) d� � �1
6
:

According to (2.25), we get

lim
t!1

sup
�2[0;L]

e��(t��)K (t� �) = 0:

Then, there exists T > L such that for every t1; t2 � T , we have

sup
�2[0;L]

��e��t2K (t2 � �) e�� � e��t1K (t1 � �) e�� ��
� sup

�2[0;L]

��e��(t2��)K (t2 � �)��+ sup
�2[0;L]

��e��(t1��)K (t1 � �)��

� �1
6

0BB@	(�)
1Z
0

� (�) d�

1CCA
�1

:

Farthermore, for t � s; one gets

lim
t!1

e�(�+k)(t�s) = 0;
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then for t1; t2 � T; we have

sup
s2[0;L]

��e�(�+k)(t2�s) � e�(�+k)(t1�s)��
� sup

s2[0;L]

��e�(�+k)(t2�s)��+ sup
s2[0;L]

��e�(�+k)(t1�s)�� � �1
6
(� jkjL)�1 :

Therefore, for t1; t2 � T; we have��e��t2Au (t2)� e��t1Au (t1)��
=

��������k
t2Z
0

e��t2e�k(t2�s)u(s)ds� k

t1Z
0

e��t1e�k(t1�s)u(s)ds

+

t2Z
0

e��t2K (t2 � �) f (� ; u(� � r)) d� �

t1Z
0

e��t1K (t1 � �) f (� ; u(� � r)) d�

��������
� � jkj

LZ
0

��e�(�+k)(t2�s) � e�(�+k)(t1�s)�� ds+ 2� jkj 1Z
0

e�(�+k)sds

+	(�)M3

t2Z
L

� (�) d� +	(�)M3

t1Z
L

� (�) d�

+	(�)

LZ
0

��e��(t2��)K (t2 � �)� e��(t1��)K (t1 � �)�� � (�) d�

� �1
6
+
2� jkj
�+ k

+ 2	 (�)M3

1Z
L

� (�) d� +
�1
6
� �1;

this achieves the proof.
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Claim 3: We show that B : B� ! C� is a contraction mapping.

In fact, for any u; v 2 B�; using (H2) ; we have

sup
t�0
e��t jBu(t)� Bv(t)j

= sup
t�0

8>><>>:
tZ
0

e��tH (t� �) jg(� ; u(� � r))� g (� ; v(� � r))j d�

9>>=>>;
� sup

t�0

8>><>>:
tZ
0

e��tH (t� �) � (�) ju (�)� v (�)j d�

9>>=>>;
� sup

t�0

8>><>>:
tZ
0

e��(t��)H (t� �) � (�)
�
e��� ju(�)� v (�)j

�
d�

9>>=>>;
�

8>><>>:supt�0
tZ
0

e��(t��)H (t� �) � (�) d�

9>>=>>; ku� vk� �M1 ku� vk� ;

from (2.19), A is a contraction mapping.

By Krasnoselskii �xed point theorem, we know that there exists at least one �xed

point of the operator A+ B.

Finally, let t � 0, for any �2 > 0; if 0 < �1 � jkj
jkj+2

h�
1�M1 �M2 � jkj

�+k

�
�2

i
;

then j�(t)j+ ju0j < �1 implies that

e��t ju (t)j

� jkj e��t
tZ
0

e�k(t�s) ju(s)j ds+

tZ
0

e��t jK (t� �)j jf(� ; u(� � r))j d�
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+ j� (0)j e�(�+k)t + e
��t + e�(�+k)t

jkj +

tZ
0

e��tH (t� u) g(� ; u(� � r))d�

� jkj

tZ
0

e�(�+k)(t�s)
��e��su(s)�� ds+ tZ

0

e��(t��) jK (t� �)j � (�)	
�
e��(��r) ju(� � r)j

�
d�

+ j� (0)j+ 2 ju0jjkj +

tZ
0

e��(t��)H (t� u) � (�)
��e���u (�)�� d�

�
�
M1 +M2 +

jkj
�+ k

�
kuk� +

jkj+ 2
jkj �1;

this means that

kuk�
�
1�

�
M1 +M2 +

jkj
�+ k

��
� jkj+ 2

jkj �1;

so

kuk� �
jkj+ 2

jkj
�
1�M1 �M2 � jkj

�+k

��1 � �2:
Thus, we know that the trivial solution of (2.14) is stable in Banach space C�

2.2.4 An example

Let us consider the following nonlinear fractional initial value problem with delay:8>>>><>>>>:
D

1
2 [CD

3
2u(t)� 1

�2+t2
sin (u (t� r))] = � e

�((1���1)t+2e��(t�r)u(t�r)) arctan(tu3(t�r))
1+e2�e

��(t�r)u(t�r)
; t � 0;

u (t) = � (t) ; t 2 [�r; 0]

lim
t!0
t1�� CD�u(t) = 0; u0(0) = u0 2 R,

(2.26)

� = 1
2
; � = 3

2
; g (t; x) = 1

�2+t2
sin (x), � > 0, g (t; 0) = 0;
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f(t; x) = f�;r(t; x) = �
e
�((1���1)t+2xe��(t�r)) arctan(tx3)

1+e2�xe
��(t�r) ; then we have:

jg (t; x)� g (t; y)j � 1
�2+t2

jx� yj i:e: � (t) = 1
�2+t2

;
��f(t; e�(t�r)x)�� � e�t ��

2et
e2�x

1+e2�x
i:e:

� (t) = � �
2et
and 	(x) = e2�x

1+e2�x
positive nondecreasing function: � is a positive con-

tinuous integrable function on [0;1) and

1Z
0

� (t) dt = ��
2
:

Farthermore, if there exists � > 0 such that for all z 2 (0; �] and � � z
2�M3(�+k)	(z)

;

then we have

	(z)

z

tZ
0

e��(t��)K(t� �)� (�) d� � 	(z)

z
M3�

�

2
� 1

4 (�+ k)
=M2;

e�(t�u)H(t� u) =
1

�(1
2
)

tZ
u

1

e(�+k)(t�s)
(s� u)�

1
2

e�(s�u)
ds;

� 1

�(1
2
)

tZ
u

(s� u)�
1
2

e�(s�u)
ds =

1

�(1
2
)

t�uZ
0

��
1
2

e��
d� � � 1

2 ; for allt � 0:

Also, if we choose � � 2� 1
2� (�+ k) then for all t � 0 we get

tZ
0

e��(t��)H(t� �)� (�) d� = ��1�
1
2

t��1Z
0

d�

1 + � 2

� 1

4 (�+ k)
=M1 < 1�

jkj
�+ k

�M2:

All conditions of theorem 2:2 are satis�ed, the trivial solution of (2.26) is stable.
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3.1 Introduction

In this chapter, we are interested in the existence and uniqueness of weak solution

of a boundary value problem of fractional di¤erential equations in fractional sobolev

spaces using �xed point theory.

Let T > 0 be a real number and I = [0; T ] be a closed and bounded interval of the

set of real numbers R. Consider the following nonlinear functional boundary value
problem of the higher-order fractional di¤erential equations with Riemann-Liouville

derivative q 2 (n� 1; n]

Dqu (t) = g (t; u (t) ; Dsu (t)) ; t 2 I; (3.1)

Dq�iujt=0 = 0; i = 1; :::; n, i 6= n� 1 and u (T ) = 0; (3.2)

where 1 � n� 1 < q � n; 0 < s < 1; g : I � R2 ! R is given function, Dq denotes

the Riemann-Liouville�s fractional derivative.

At recent decades, majority of published papers has been devoted to give the

existence and uniqueness of solution of various classes of fractional di¤erential and

integral equations in the space of continuous functions C ([a; b]) or C (R+) : But
the discussion on measurable solutions of di¤erential and integral equations re-

mains relatively few compared to continuous solutions of di¤erential and integral

equations, we refer to some papers about this side as [24, 46, 47]. Where the Lp-

solutions of fractional di¤erential equations are discussed by Burton and Zhang in

[24] using some techniques to show the belonging of solutions to Lp (R+). In [46];
Schauder�s and Darbo�s �xed point theorems are employed to study the existence

of Lp (R+)�solutions of nonlinear quadratic integral equations. Also in [47]; the
authors give di¤erent existence results for Lp [a; b] and C ([a; b])�solutions of some
nonlinear integral equations of the Hammerstein and Volterra types using some �xed

point theorems combined with a general version of Gronwall�s inequality.

Motivated by those valuable contributions mentioned above, we mainly discuss

the existence and uniqueness of solution for nonlinear FDE given by (3.1)-(3.2) in an

apropriate weighted fractional Sobolev space. To achieve our mentioned purpose, we
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�rst transform the fractional di¤erential equation (3.1) with conditions (3.2) into an

equivalent integral equation with Green continuous function using Laplace transform

technic of the Riemann-Liouville fractional derivative and some analytical skills, then

we present a suitable study space which is based essentialy on the classical concepts

of weighted Lp�spaces and Sobolev spaces.

3.2 Study space

We start by introducing the Riemann-Liouville fractional Sobolev space. Let

W s;p
RL (I) =

�
u 2 Lp (I) and I1�su 2 W 1;p (I)

	
:

Now, we present the completeness of W s;p
RL (I) :

Lemma 3.1 The Riemann-Liouville fractional Sobolev space W s;p
RL (I) is a Banach

space endowed with the norm

kukW s;p
RL(I)

=
�
kukpp +



I1�su

p
W 1;p(I)

� 1
p
:

Proof. It is easy to verify that k:kW s;p
RL(I)

de�nes a norm so we pass to prove the

completeness. Let (un) 2 W s;p
RL (I) be a Cauchy sequence, this implies that (un) and

(I1�sun) are Cauchy sequences in Lp (I) and W 1;p (I) respectively, since Lp (I) and

W 1;p (I) are completes, there exist functions u and us such that un ! u in Lp (I) and

I1�sun ! us in W 1;p (I) [i:e: I1�sun ! us in Lp (I) and (I1�sun)
0 ! u0s in L

p (I)].

We have (I1�sun) is a Cauchy sequence in W 1;p (I) ; then (I1�sun) is a Cauchy

sequence in Lp (I) ; therefore, there exist v 2 Lp (I) such that I1�sun ! v in Lp (I) :

Beside, we have un ! u in Lp (I) ; then by using the fact I1�s : Lp (I)! Lp (I) ; s 2
(0; 1), we get I1�sun ! I1�su in Lp (I), so, I1�su = v and I1�su = us:

It remains to show that (I1�su)0 = u0s; where u
0
s denotes the �rst derivatives in

distributions sens of us: In other term we prove that (I1�sun)
0 ! (I1�su)

0 in Lp (I) :

Clearly, Lp (I) � L1loc (I) ; then I
1�sun determines a distribution �TI1�sun 2 D0 (I).
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For � 2 C1c (I) and we use Holder inequality we get

�� �TI1�sun (�)� �TI1�su (�)
�� �

Z
I

��I1�sun (t)� I1�su (t)�� j� (t)j dt
� k�kp0



I1�sun � I1�su

p :
where p0 is the exponent conjugate to p: therefore: �TI1�sun (�)! �TI1�su (�) as n!
1:
Also, (I1�sun)

0 determine a distribution bT , then for � 2 C1c (I) we have
bT(I1�sun)0 (�) = Z

I

�
I1�sun

�0
(t) � (t) dt = �

Z
I

�
I1�sun

�
(t) �0 (t) dt = �bTI1�sun (�0) ;

we pass to the limit when n!1, we obtain

bTu0s (�) = �bTI1�su (�0) = bT(I1�su)0 (�)
for every � 2 C1c (I) : Thus u0s = (I1�su)

0 in the distributional sense on I for s 2
(0; 1) :

Consequently, I1�su 2 W 1;p (I) and (I1�su)0 = u0s in distributional sens. There-

fore I1�sun ! I1�su inW 1;p (I) :Accordingly, un ! u inW s;p
RL (I) :Whence (W

s;p
RL (I) ;

k:kW s;p
RL(I)

�
is a Banach space

Remark 3.1 In [16], the authors discussed more broadly about fractional Sobolev
spaceW s;p

RL (I) in the case where p = 1 to make the relation between this spaces

and the classical spaces of functions of bounded variation BV. The authors

shown also the completeness of the fractional Sobolev spaces W s;1
RL (I).

However, we note that we can not show the existence and uniqueness of solution

with using the �xed point theorems in W s;p
RL (I). To overcome these problem, we can

use a more suitable weighted norm.

We de�ne the weighted Lp�space
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Lp;� (I) =
n
u 2 Lp (I) ; kukp;� < +1

o
;

where, kukp;� is the positive real valued function de�ned on Lp (I) by

kukp;� =

0BB@Z
I

� (t) ju (t)jp dt

1CCA
1
p

for all u 2 Lp (I) :

Also, we de�ne the weighted fractional sobolev space with Riemann-Liouville frac-

tional derivative by

E� (I) =
�
u 2 Lp;� (I) : I1�su 2 W p;�

1 (I)
	
;

equiped with the norm

kuk� =
�
kukpp;� +



I1�su

p
W p;�
1

� 1
p
;

where

W p;�
1 (I) = fv 2 Lp;� (I) : v0 2 Lp;� (I)g ;

� is a given function de�ned on I and such that there exists a real number �� > 1

satis�es 1 � � (t) � ��; for all t 2 I; and

K 0 (t) 2 Lp;� (I) ; for a.e. t 2 I; (3.3)

where

K (t) =

8>>>><>>>>:
tZ
0

(�(t��))
1
p

(t��)s d� ; t � � ;

0; t � � :

(3.4)

Clearly

� (t� �) � 1; for all t; � 2 I with t � � ;
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3.3 Integral equation

De�nition 3.1 A function u is a solution of the system (3.1)-(3.2) if u 2 E� (I)
and u satis�es (3.1)-(3.2):

Lemma 3.2 System (3.1)-(3.2) is equivalent to the following integro-di¤erential

equation

u (t) =

TZ
0

G (t; �) g (� ; u (�) ; Dsu (�)) d� ; t 2 I;

where G (:; :) denotes the Green�s function de�ned on I2 by

G (t; �) =

8<:
1
�(q)

h
(t� �)q�1 �

�
t
T

�q�n+1
(T � �)q�1

i
; 0 � � � t � T;

1
�(q)

h
�
�
t
T

�q�n+1
(T � �)q�1

i
; 0 � t � � � T:

(3.5)

Proof. For conveniece we take [Dq�iu (t)]t=0 instead bi. Applying Laplace trans-

form on both side of (3.1) with putting g (t) = g (t; u (t) ; Dsu (t)) and using Lemma

1:8, we get

zqU (z)�
n�1X
i=0

zi
�
Dq�i�1u (t)

�
t=0
= G (z) ;

where U (z) and G (z) denote the Laplace transformes of u (t) and g (t) respectively.

In other words, we can write

U (z) = z�qG (z) +
n�1X
i=0

bi+1z
i�q:

Inverse Laplace transform give us

u (t) =
1

� (q)

tZ
0

(t� �)q�1 g (� ; u (�) ; Dsu (�)) d� +

n�1X
i=0

bi+1
� (q � i)t

q�i�1
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=
1

� (q)

tZ
0

(t� �)q�1 g (� ; u (�) ; Dsu (�)) d� +

nX
i=1

bi
� (q � i+ 1)t

q�i;

we have bi = 0; i = 1; :::; n for i 6= n� 1 then

u (t) =
1

� (q)

tZ
0

(t� �)q�1 g (� ; u (�) ; Dsu (�)) d� +
bn�1

� (q � n+ 2)t
q�n+1: (3.6)

But condition u (T ) = 0, then we obtain

bn�1
� (q � n+ 2) =

�T n�q�1
� (q)

TZ
0

(T � �)q�1 g (� ; u (�) ; Dsu (�)) d� ;

substuting in (3.6), we get

u (t) =

TZ
0

G (t; �) g (� ; u (�) ; Dsu (�)) d� ;

where G (:; :) is the Green�s kernel de�ned by (3.5). The proof of Lemma 3:2 is

complete

De�ne the operator T : E� (I)! E� (I) by

T u (t) =

TZ
0

G (t; �) g (� ; u (�) ; Dsu (�)) d� : (3.7)

In the following, we present some existence results for the boundary value problem

(3.1)-(3.2).
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3.4 Existence results

In this section, we present two existence results for BVP of FODE (3.1)-(3.2) using

�xed point theorems. First result is based on Shauder �xed point theorem in order

to investigate the existence of the weak solutions of the system (3.1)-(3.2).

Assume the following hypotheses:

(H5) The function g : I � R! R satis�es the Carathéodory�s condition:
(H6) There exist a real constant c > 0 and a function b : I ! R+ belongs to

L1;� (I) and such that

jg (� ; u; v)j � b (�) + c (jujp + jvjp) ;

for any � 2 I and any u; v 2 R:
(H7) There exists a real number R > 0 satis�es

G�

�
T�� +

��T
1+p(1�s)

(� (2� s))p +
kK 0kp;�

(� (1� s))p
� 1
p h
kbk1;� + cRp

i
� R;

where G� = sup
(t;�)2I2

jG (t; �)j :

Theorem 3.1 If (H5)� (H7) hodl, then problem (3.1)-(3.2) has at least one solu-

tion.

Proof. Consider the operator T given by (3.7) and we de�ne the set

BR = fu 2 E�; kuk� � Rg ;

where R is the same constant de�ned in (H7) : It is clear that BR is convex, closed

and bounded subset of E�.

Firstly, we show that T BR � BR: Let u 2 BR, then by using (H5) ; (H6), we get

� (t)
1
p jT u (t)j � � (t)

1
p

TZ
0

jG (t; �)j jg (� ; u (�) ; Dsu (�))j d�
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� � (t)
1
p G�

TZ
0

[� (�) (b (�) + c (ju (�)jp + jDsu (�)jp))] d�

� �
1
p
�G�

�
kbk1;� + c

�
kukpp;� +




�I1�su�0


p
p;�

��
� �

1
p
�G�

h
kbk1;� + c kuk

p
�

i
:

kT ukpp;� � T��Gp�
h
kbk1;� + cRp

ip
: (3.8)

Similarly, we obtain the following estimates



I1�sT u

p
p;�
� ��T

1+p(1�s)

(� (2� s))pG
p
�

h
kbk1;� + cRp

ip
; (3.9)

and

� (t)
1
p

����I1�sT u�0 (t)���
� � (t)

1
p

� (1� s)
d

dt

tZ
0

(t� �)�s
TZ
0

jG (� ; �)j
� (�)

� (�) jg (�; u (�) ; Dsu (�))j d�d�

� G�
� (1� s)

2664� 1
p (t)

d

dt

tZ
0

(� (t� �))
1
p

(t� �)s d�

3775hkbk1;� + cRpi ;



�I1�sT u�0


p

p;�
�

kK 0kp;�
(� (1� s))pG

p
�

h
kbk1;� + cRp

ip
: (3.10)

We combine (3.8)-(3.10), it yilds

kT uk� � G�
�
T�� +

��T
1+p(1�s)

(� (2� s))p +
kK 0kp;�

(� (1� s))p
� h
kbk1;� + cRp

i
� R: (3.11)

Hence T BR � BR.
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Secondly, We prove that A is continuous operator. Let un, u in E� such that:

un ! u in E�, then for all t 2 I we have

� (t)
1
p jT un (t)� T u (t)j

� � (t)
1
p

TZ
0

jG (t; �)j
� (�)

[� (�) jg (� ; un (�) ; Dsun (�))� g (� ; u (�) ; Dsu (�))j] d�

� �
1
p
�G� kNgun �Nguk1;�

� �
1
p
�G� kNgun �Nguk1;� ;

applying Lp�norm, one gets

kT un � T ukp;� � (T��)
1
p G� kNgun �Nguk1;� : (3.12)

Also

� (t)
1
p

��I1�sAun (t)� I1�sAu (t)��
� � (t)

1
p

� (1� s)

tZ
0

(t� �)�s
TZ
0

jG (� ; �)j
� (�)

(� (�) jg (�; un (�) ; Dsun (�))

� g (�; u (�) ; Dsu (�))j) d�d�

� � (t)
1
p G�

� (1� s)

tZ
0

(t� �)�s kNgun �Nguk1;� d�

� �
1
p
� T 1�s

� (2� s)G� kNgun �Nguk1;� ;

then 

I1�sT un � I1�sT u

pp;� � �
1
p
� T

1
p
+1�s

� (2� s) G� kNgun �Nguk1;� : (3.13)
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Moreover

� (t)
1
p

����I1�sT un�0 (t)� �I1�sT u�0 (t)���
� G�

� (1� s)

2664� 1
p (t)

d

dt

tZ
0

(� (t� �))
1
p

(t� �)s d�

3775 kNgun �Nguk1;� ;
i.e. 


�I1�sT un�0 � �I1�sT u�0




p;�
�
kK 0kp;� G�
� (1� s) kNgun �Nguk1;� : (3.14)

Combining (3.12)-(3.14), one �nds

kT un � T uk� � G�

24(T��) 1p + � 1
p
� T

1
p
+1�s

� (2� s) +
kK 0kp;�
� (1� s)

35
�kNgun �Nguk1;� : (3.15)

Taking (H5),(H6) and Lemma 1:9 into acount, we deduce that the Nemytskii oper-

ator Ng is continuous from Lp;� to L1;�, then the right side term of (3.15) tends to

zero when n tends to in�nity. This show that the operator T is continuous.

Thirdly, we prove that the set T BR = fT u : u 2 BRg is relatively compact in E�
using Kolmogorov theorem.

For any u 2 BR and any � � 0; we have

� (t)
1
p jT u (t+ �)� T u (t)j

� � (t)
1
p

TZ
0

jG (t+ �; �)�G (t; �)j jg (� ; u (�) ; Dsu (�))j d�

� � (t)
1
p

TZ
0

jG (t+ �; �)�G (t; �)j
� (�)

[� (�) (b (�) + c (ju (�)jp + jDsu (�)jp))] d�
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� � (t)
1
p sup
�2I

jG (t+ �; �)�G (t; �)j
h
kbk1;� + c

�
kupk1;� + k(Dsu)pk1;�

�i
= �

1
p
� sup
t2I

�
sup
�2I

jG (t+ �; �)�G (t; �)j
� �
kbk1;� + c

�
kukpp;� +




�I1�su�0


p
p;�

��
� �

1
p
� sup
t2I

�
sup
�2I

jG (t+ �; �)�G (t; �)j
� h
kbk1;� + c kuk

p
�

i
;

kT un (:+ �)� T u (:)kp;�
(T��)

1
p

h
kbk1;� + cRp

i � sup
t2I

�
sup
�2I

jG (t+ �; �)�G (t; �)j
�
: (3.16)

Similarly

� (t)
1
p

��I1�sT u (t+ �)� I1�sT u (t)��
� � (t)

1
p

� (1� s)

tZ
0

(t� �)�s
TZ
0

jG (� + �; �)�G (� ; �)j jg (�; u (�) ; Dsu (�))j d�d�

� � (t)
1
p

� (1� s)

tZ
0

(t� �)�s
TZ
0

jG (� + �; �)�G (� ; �)j
� (�)

� (�) [b (�)

+ c (ju (�)jp + jDsu (�)jp)] d�d�

� � (t)
1
p

� (1� s)

tZ
0

(t� �)�s sup
�2I
jG (� + �; �)�G (� ; �)j

h
kbk1;�

+ c
�
kupk1;� + k(Dsu)pk1;�

�i
d�

� T 1�s�
1
p
�

� (2� s)sup�2I

�
sup
�2I
jG (� + �; �)�G (� ; �)j

� h
kbk1;� + c kuk

p
�

i
;

� (2� s) k(I1�sT un) (:+ �)� (I1�sT u) (:)kp;�
T 1�s (T��)

1
p

h
kbk1;� + cRp

i � sup
�2I

�
sup
�2I
jG (� + �; �)�G (� ; �)j

�
:

(3.17)
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Using same method, one �nds

� (t)
1
p

����I1�sT u�0 (t+ �)� �I1�sT u�0 (t)���
� � (t)

1
p

� (1� s)
d

dt

tZ
0

(t� �)�s
TZ
0

jG (� + �; �)�G (� ; �)j jg (�; u (�) ; Dsu (�))j d�d�

� � (t)
1
p

� (1� s)
d

dt

tZ
0

(t� �)�s
TZ
0

jG (� + �; �)�G (� ; �)j
� (�)

� [� (�) (b (�) + c (ju (�)jp + jDsu (�)jp))] d�d�

� � (t)
1
p

� (1� s)
d

dt

tZ
0

(t� �)�s sup
�2I

jG (t+ �; �)�G (t; �)j d�

�
h
kbk1;� + c

�
kupk1;� + k(Dsu)pk1;�

�i

�

2664� (t) 1p d
dt

tZ
0

(�(t��))
1
p

(t��)s d�

3775
� (1� s) sup

t2I

�
sup
�2I

jG (t+ �; �)�G (t; �)j
�

�
�
kbk1;� + c

�
kukpp;� +




�I1�su�0


p
p;�

��
;

� (1� s)


(I1�sT u)0 (:+ �)� (I1�sT u)0 (:)



p;�

kK 0kp;�
h
kbk1;� + cRp

i � sup
t2I

�
sup
�2I

jG (t+ �; �)�G (t; �)j
�
:

(3.18)

From the continuity of the function G (:; :) on I2; we conclude that the second mem-

bers of (3.16)-(3.18) tend to zero when � tends to zero, these prove the condition (i)

of Lemma 1:10.

Fartheremore, from 3.11, we have kT uk� � R for all u 2 BR; this proves that
T BR is uniformly bounded. Consiquently, T BR is relatively compact in E�: Finally,
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using Schauder�s �xed point theorem, we conclude that T has at least one �xed point
in BR and the proof of Theorem 3:1 is complete

Second result devoted to show the existence of unique solution of (3.1)-(3.2) using

Banach contraction principle.

Consider the following hypotheses on g:

(H8) There exist a positive real number p
0 � 1 and a function ' : I ! R+ and

such that

(i) ' 2 Lp
0
(I) a.e. t 2 I; where 1

p
+ 1

p0
= 1:

(ii) For any t 2 I and any u; v; u; v 2 R; we have

jg (t; u; v)� g (� ; u; v)j � ' (t) [ju� uj+ jv � vj] :

Theorem 3.2 Assume that (H5) ; (H8) hold. Then the boundary value problem
(3.1)-(3.2) has a unique solution provided

G� k'kp0
"
(T��)

1
p +

T 1�� (T��)
1
p

� (2� �) +



K 0


p;�

� (1� �)

#
< 1;

where G� = max
(t;�)2I2

jG (t; �)j :

Proof. Consider the operator T given by (3.7), we want to show that T is a

contraction mapping on E� (I). To this purpose, let u; v in E�; using (H5) and (H8) ;

then for a.e. t 2 I we have

� (t)
1
p jT u (t)� T v (t)j

� � (t)
1
p

TZ
0

jG (t; �)j
(� (�))

1
p

h
(� (�))

1
p

��g �� ; u (�) ; D�u (�)
�
� g

�
� ; v (�) ; D�v (�)

���i d�

� G�� (t)
1
p

TZ
0

' (�)
h
(� (�))

1
p
�
ju (�)� v (�)j+

��D�u (�)�D�v (�)
���i d�
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� G��
1
p
� k'kp0




� 1
p
�
ju� vj+

��D�u�D�v
���




p

� G��
1
p
� k'kp0

h
ku� vkp;� +



D�u�D�v



p;�

i
� G��

1
p
� k'kp0

�
ku� vkp;� +




�I1��u�0 � �I1��v�0



p;�

�
� G��

1
p
� k'kp0 ku� vk�

applying Lp�norm, we get

kT u� T vkp;� � G� (T��)
1
p k'kp0 ku� vk� (3.19)

Also

� (t)
1
p

��I1��T u (t)� I1��T v (t)��
� � (t)

1
p

� (1� �)

tZ
0

(t� �)��
TZ
0

jG (� ; �)j
� (�)

1
p

h
� (�)

1
p

��g ��; u (�) ; D�u (�)
�

� g
�
�; v (�) ; D�v (�)

���� d�d�
� G�� (t)

1
p

� (1� �)

tZ
0

(t� �)��
TZ
0

' (�)
h
(� (�))

1
p (ju (�)� v (�)j

+
��D�u (�)�D�v (�)

���� d�d�

� G��
1
p
�

� (1� �)

0BB@
tZ
0

(t� �)�� d�

1CCA k'kp0 


� 1
p
�
ju� vj+

��D�u�D�v
���




p

� G��
1
p
�

� (2� �)T
1�� k'kp0

�
ku� vkp;� +




�I1��u�0 � �I1��v�0



p;�

�
;
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therefore



I1��T u� I1��T v


p;�
� T 1��G� (T��)

1
p

� (2� �) k'kp0 ku� vk� : (3.20)

Moreover

� (t)
1
p

����I1��T u�0 (t)� �I1��T v�0 (t)���
� G�� (t)

1
p

� (1� �)
d

dt

tZ
0

(t� �)��
TZ
0

' (�)
h
(� (�))

1
p (ju (�)� v (�)j

+
��D�u (�)�D�v (�)

���� d�d�
� G�

� (1� �)

2664� (t) 1p ddt
tZ
0

(� (t� �))
1
p

(t� �)�
d�

3775 k'kp0
�



� 1

p
�
ju� vj+

��D�u�D�v
���




p
;

using some precedent method and applying Lp�norm on both sides of previous in-

equatity, we get


�I1��T u�0 � �I1��T v�0



p;�
� G�
� (1� �)




K 0




p;�
k'kp0 ku� vk� (3.21)

Combining inequalities (3.19)-(3.21) then we obtain

kT u� T vk� � G� k'kp0
"
(T��)

1
p +

T 1�� (T��)
1
p

� (2� �) +
kKkp;�
� (1� �)

#
ku� vk�

< ku� vk� ;

this means that the operator is a contraction. Hence, by using Banach contraction

principle and according to the theorem 3:2, we conclude that T has a unique �xed

point in E�: Then (3.1)-(3.2) has a unique �xed point
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3.5 Examples

Example 3.1 Consider the following boundary value problem of fractional di¤eren-
tial equations for p = 4 :

Dqu (t) =
t
�1
2 et+[(tu(t))2�(tDsu(t))2]

2

(1+t)3et+ju(t)j
; t 2 I = [0; 1] ;

D(q�i)ujt=0 = 0; i = 1; 2; 3; 5; u (1) = 0
(3.22)

q = 9
2
; s = 1

6
; g (t; u; v) =

t
�1
2 et+[(tu)2�(tv)2]

2

(1+t)3et+juj
; then

jg (t; u; v)j � t
�1
2 et + T 4 (u4 + v4)

(1 + t)3 et+juj
� t

�1
2 et

(1 + t)3 et
+
T 4 (u4 + v4)

(1 + t)3 et+juj

� 1

t
1
2 (1 + t)3

+
T 4 (u4 + v4)

(1 + t)3
� b (t) + c

�
u4 + v4

�
;

where b (t) = 1

t
1
2 (1+t)3

and c = 1: � (t) = (1 + t)4 ; it is clear that � (t) �
� (t)� (t� �) for t � � ; and

K (t) =

tZ
0

(� (t� �))
1
p

(t� �)s d� =

tZ
0

1 + z

z
1
6

dz =
6t

5
6 (5t+ 11)

55
;

and

K 0 (t) = (t
1
6 + t�

1
6 );

some computations give us

kK 0k4;� ' 3:187991075720807; kbk1;� =
8

3
;

then

R4 � 4:672639065946051R + 2:666666666666665 � 0;

so R 2 [0:598080985027521; 1:405251623483919].
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Using theorem 3:1, we deduce that the nonlinear functional boundary value problem

(3.22) has at least one solution for any

R 2 [0:598080985027521; 1:405251623483919] :

Example 3.2 Consider the following boundary value problem of fractional di¤eren-
tial equations with p = 4:(

D�u (t) = ' (t)
�
e�1 sin (tu) + t2h

�
D�u

��
; t 2 I = [0; 1] ;

D(��i)ujt=0 = 0 ; i = 1; 2; 3; 5; u (1) = 0,
(3.23)

� = 9
2
; � = 1

6
; g (t; x; y) = ' (t)

�
e�1 sin (tu) + t2h

�
D�u

��
where: h (x) =

e�e
�x
; ' (t) = 1

(9t)2(1+t)
. By the �nite increments theorem we get

jh (x)� h (y)j � e�1 jx� yj ;

for x; y 2 R (since z + e�z � 1 for all real z), also

jsin (tx)� sin (ty)j � t2 jx� yj ;

then

jg (t; x; y)� g (t; x; y)j � ' (t)
�
e�1 jsin (tx)� sin (tx)j+ t2 jh (y)� h (y)j

�
� ' (t) [jx� xj+ jy � yj] ;

so, condition (H8) holds with ' (t) = e�1

92(1+t)
; obviously ' 2 L 3

4 ([0; 1]) and

k'k3=4 = 0:0363:

� (t) = (1 + t)4 ; it is clear that � (t) � 1 for t 2 [0; 1] ; and the Banach space is

E�� (I) =
n
u 2 L4;� (I) : I 56u 2 W 4;�

1 (I)
o
;
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also

K (t) =

tZ
0

(� (t� �))
1
p

(t� �)�
d� =

tZ
0

1 + z

z
1
6

dz =
6t

5
6 (5t+ 11)

55
;

and

K
0
(t) = (t

1
6 + t�

1
6 );

then, some computations give us


K 0




4;�
' 3:187991075720807;

and

G� k'k3=4

"
(T��)

1
p +

T 1�� (T��)
1
p

� (2� �) +



K 0


p;�

� (1� �)

#
' 0:5046 < 1:

So, using theorem 3:2, we deduce that the nonlinear functional boundary value

problem 3.23 has a unique solution.



CHAPTER 4

Fractional di¤usion integrodi¤erential equation

78
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4.1 Position of problem

The main goal of this chapter is to prove the existence of the unique solution and

some regularity results for the following FPDE with fractional integral condition by

the use of Rothe time discretization method:

D�u (t; x)�4u (t; x) =
tZ
0

a (t� s)4u (s; x) ds+ f (t; x) in I � 
; (4.1)

With initial condition

u (0; x) = u0 (x) , in 
; (4.2)

Fractional integral condition

I1��u
�
0+
�
= U1 (x) , in 
; (4.3)

And boundary condition

u (t; x) = 0, on I � @
; (4.4)

where � 2 ]0; 1[ ; I = [0; T ] and 
 is an open bounded domain of Rn, with a smooth
boundary @
. The fractional integral I1�� and the derevative D� are understood

here in Riemann-Liouville sense.

we start by the discretization formula of the integro-di¤erential fractional di¤u-

sion equation (4.1), using an implicit scheme, then we construct a discrete numerical

solution of the discretized problem, then, we derive some a priori estimates for the

approximations. The convergence of the method and the well posedness of the prob-

lem under study are also established. At last, we discuss the uniqueness of the weak

solution.

Clearly, if g 2 Lp (0; T ) ; 1 � p � 1; and ' : ]0; T ] �! R+ is a function de�ned

by

' (t) =
t��

� (1� �) ;
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then(see [49])

' � g 2 Lp (0; T ) ; where ' � g (t) =
tZ
0

' (t� s) g (s) ds

and '� g is absolutly continuous, since

' (t� s) g (s) 2 L1 (0; T ) :

Moreover, if h is a function such that g � h; then

I�g (t) � I�h (t)

which means that I� is increasing.

The problem (4.1)-(4.4) can be written as

@

@t
I1��u (t; x)�4u (t; x) =

tZ
0

a (t� s)4u (s; x) ds+ f (t; x) : (4.5)

4.2 Assumptions and discretization scheme

In this section, we give the assumptions that will ensure the existence of the unique

weak solution. Let L2 (
) be the usual space of Lebesgue square integrable real

functions on 
 whose inner product and norm will be denoted by (:; :) and k.k ;
respectively, and k:k�1 stands for the norm in H�1 (
)(the dual space to H1

0 (
)).

We make the following assumptions:

(H9) u0 2 H1
0 (
) \ L1 (
)

(H10) f (t) 2 L2 (
) and kf (t)� f (t0)k � l jt� t0j
(H11) a is a continuous function such that ja (t)� a (t0)j � c1 jt� t0j
We look for a weak solution in the following sense.

De�nition 4.1 By a weak solution of problem (4.1)-(4.4) we mean a function u

satisfying:
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1 u 2 L2 (I;H1
0 (
)) with I

1�� (u) 2 C (I;H�1 (
)) :

2 @tI1�� (u) 2 L2 (I;H�1 (
)) :

3 u satis�es (4.2) and (4.3):

4 For any � 2 H1
0 (
), we have

Z
I

�
@tI

1�� (u) ; �
�
dt+

Z
I

(ru;r�) dt =
Z
I

(f; �) dt+

Z
I

0@ tZ
0

a (t� s)ru (s) ds;r�

1A dt:
We divide the interval I into n subintervals of length h = T

n
and denote ui =

u (ti; x) ; ti = ih; �ui =
ui�ui�1

h
; i = 1; :::; n:We will omit x for sake of simplicity,

the associated discretized problem is

�
I1�� (ui)� I1�� (ui�1) ; �

�
+ h (rui;r�) = h (fi; �) + h2

i�1X
j=1

(aijruj;r�)

(4.6)

The existence of a weak solution ui 2 H1
0 (
) at each time step is ensured due

to the monotony and the coercivity of the operator I
1��(ui)
h

�4ui � aijh4ui :

4.3 A priori estimates

In this section, we establish some useful a priori estimates.

Lemma 4.1 The following estimates hold uniformly in n; i; j and h:

lX
i=1

h


�I1�� (ui)

2 � C; kruik2 � C; lX

i=1

krui �rui�1k2 � C: (4.7)
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Proof. Setting � = ui � ui�1 in (4.6) and summing up for i = 1; :::; l; we obtain

lX
i=1

h
�
�I1�� (ui) ; �ui

�
+

lX
i=1

(rui;rui �rui�1) =

lX
i=1

h (fi; �ui) +

lX
i=1

 
h
i�1X
j=1

(aijruj;rui �rui�1)
!
: (4.8)

The equality (4.8) is brie�y denoted as: J1 + J2 = J3 + J4: Now we estimate each

term, by the use of mean value theorem we get

J1 � C
lX
i=1

h


�I1�� (ui)

2 : (4.9)

Moreover

2J2 = 2
lX
i=1

(rui �rui�1;rui �rui�1) + 2
lX
i=1

(rui�1 �rui;rui �rui�1)

�2
lX
i=1

krui�1k2

=
lX
i=1

krui �rui�1k2 +
lX
i=1

kruik2 �
lX
i=1

krui�1k2

=
lX
i=1

krui �rui�1k2 + krulk2 � kru0k2 : (4.10)

Due to Cauchy-Schwarz, ��Young, Poincaré�s inequalities, we obtain

jJ3j =
�����
lX
i=1

h (fi; �ui)

����� � C
 
"+

1

"

lX
i=1

h k�uik2
!
� C

 
"+

1

"

lX
i=1

h kr�uik2
!
:

(4.11)

By the use of Cauchy-Schwarz and ��Young inequalities, the memory term can be

estimated
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jJ4j =
�����
lX
i=1

h2
i�1X
j=1

(aijruj;r�ui)
�����

� C

 
"+

1

"

lX
i=1

h kr�uik2
!
: (4.12)

Summarizing all these consideration, collecting (4.9)-(4.12), choosing " small, then

the discrete Gronwall Lemma conclude the proof of the lemma 4:1

Let un be a step functions de�ned by:

un (t) =

(
ui t 2 (ti�1; ti]
u0 t = 0

, i = 1; :::; n; (4.13)

In (u
n (t)) =

(
I1�� (ui) ; t 2 (ti�1; ti]
U1 t = 0

; i = 1; :::; n: (4.14)

We denote by fn and Mn the functions

fn (t) =

(
fi t 2 [ti�1; ti]
f0 t = 0

i = 1; :::; n; (4.15)

Mn (t) =

(
h
Pi�1

j=1 aijruj t 2 [ti�1; ti]
ha10ru0 t = 0

i = 1; :::; n: (4.16)

We de�ne Rothe�s functions on the interval I by

un (t) = ui�1 + (t� ti�1) �ui; t 2 [ti�1; ti] ; i = 1; :::; n; (4.17)

In (u
n (t)) = I1�� (ui�1) + (t� ti�1) �I1�� (ui) t 2 [ti�1; ti] ; i = 1; :::; n: (4.18)

Lemma 4.2 The a priori estimate Z
I

k@tInk2�1 � C;
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holds for 1 � i � n, where k@tInk�1 = sup
k�k�1; �2H1

0

j(@tIn; �)j :

Proof. Applying Lemma 4:1 we conclude the proof

Lemma 4.3 There exists a positive constant C such that

jX
i=1

h kruik2 � C; 1 � j � n.

Proof. According to Lemma 4:1, we have

h kruik2 � hC;

summing over i yields

jX
i=1

h kruik2 �
jX
i=1

hC = j
T

n
C � C;

since j � n

4.4 Convergence and existence results

From lemmas 4:2 and 4:3, we could say

max
I



In

+ k@tInkL2(I;H�1(
)) � C:

Hence, there exist (see [60] lemma.1.3.13) w 2 C (I;H�1 (
)) \ L1 (I; L2 (
)) with
@tw 2 L2 (I;H�1 (
)) and subsequence Ink such that

Ink �! w in C
�
I;H�1 (
)

�
; Ink (t)* w (t) in L2 (
)

Ink (t) * w (t) in L2 (
) ; @tInk * @tw in L2
�
I;H�1 (
)

�
(4.19)
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In view of lemma 4:1 one can deduce that fungn is uniformely bounded in L2 (I;H1
0 (
)) :

Thereafter, we can extract subsequence funkgk2N such that

unk *
k�!1

u in L2
�
I;H1

0 (
)
�
: (4.20)

Therefore, it follows from (H10) that

kfn (t)� fkL2(I;L(
)) �
C

n
;

and so

fn (t) �!
n�!1

f in L2 (I; L (
)) : (4.21)

Proceeding as in [63], we will be able to state the following lemma.

Lemma 4.4 The sequence fMngn is uniformly bounded and possess a subsequence
fMnkgk such that

Mnk *
k�!1

M in L2
�
I; L2 (
)

�
; (4.22)

where

(M (u) ; �) =

0@ tZ
0

a (t� s)ru (s) ds;r�

1A :
Our next target is to prove the strong convergence of fIngn and fungn in
L2 (I; L2 (
)) and L2 (I;H1

0 (
)) respectively.

Lemma 4.5 There exist subsequences fInkgk of fIngn and funkgk2N of fungn for
which

Ink �! w in L2
�
I; L2 (
)

�
;

unk �! u in L2
�
I;H1

0 (
)
�
: (4.23)

Proof. By vertue of Kolmogorov compactness criterion, it is su¢ cient to prove
that

kInk2L2(I;L2(
)) + kunk
2
L2(I;H1

0 (
))
� C;
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kIn (t+ s; x+ h)� In (t; x)kL2(I;L2(
)) �!
s;jhj�!0

0;

kun (t+ s; x+ h)� un (t; x)kL2(I;H1
0 (
))

�!
s;jhj�!0

0:

This can be easily obtained using the above lemmas

The main result of this paper is given in the following theorem.

Theorem 4.1 The limit u is a weak solution of the problem (4.1)-(4.4) in sense of

de�nition 4:1.

Proof. In view of lemma 4:5 and the well-known Minty-Browder�s trick, we can
conclude that w = I1�� (u) : On the other hand, from the equality

Ink (u
nk)� U1 =

tZ
0

@tInk (u
nk (s)) ds (4.24)

we get as k �!1

I1�� (u)� U1 =
tZ
0

@tI
1��u (s) ds (4.25)

This implies that

I1��
�
u
�
0+
��
= U1:

Hence, the condition (4.3) is ful�lled. Obviously, in light of (4.13)-(4.18), the identity

(4.6) can be rewritten asZ
I

(@tIn (t) ; �) dt+

Z
I

(run;r�) dt =
Z
I

(fn; �) dt+

Z
I

(Mn;r�) dt; 8� 2 H1
0 (
) :

(4.26)

Now, replacing n by nk �!1 in (4.26) then taking (4.19), (4.21), Lemmas 4:4 and

4:5 into account, it yields

Z
I

�
@tI

1�� (u) ; �
�
dt+

Z
I

(ru;r�) dt =
Z
I

(f; �) dt+

Z
I

0@ tZ
0

a (t� s)ru (s) ds;r�

1A dt:
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Thus, u is a weak solution of problem (4.1)-(4.4)

4.5 Uniqueness of weak solution

Now, we are prepared to prove the uniqueness of the weak solution as follows.

Theorem 4.2 Under the assumptions (H9)� (H11), the problem (4.1)-(4.4) has a

unique weak solution.

Proof. Let us suppose that the problem (4.1)-(4.4) has two weak solutions u1;

u2; then u = u1 � u2 satis�es

Z
I

�
@t
�
I1��u1 � I1��u2

�
; �
�
dt+

Z
I

(ru;r�) dt =
Z
I

0@ tZ
0

a (t� s)ru (s) ds;r�

1A dt
(4.27)

We divide the interval I into subintervals with the length p such that

max
I
ja (t)j :p < 1;

then we choose the function � in (4.27) as

� (t) =

(
u (t) t 2 [0; p]
0 t 2 ]p; T ]

we obtain

�
I1�� (u1)� I1�� (u1) ; u1 � u2

�
+

pZ
0

kru (t)k2 dt

=

pZ
0

0@ tZ
0

a (t� s)ru (s) ;ru (t)

1A dt (4.28)
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Monotony of I1�� yields

�
I1�� (u1)� I1�� (u2) ; u1 � u2

�
� 0:

Hypothesis (H11) and Cauchy-Schwarz inequality give us

pZ
0

kru (t)k2 dt �
pZ
0

������
0@ tZ
0

a (t� s)ru (s) ;ru (t)

1A������ dt
�

pZ
0








tZ
0

a (t� s)ru (s) ds







 : kru (t)k dt
� max

I
ja (t)j








pZ
0

ru (t) dt







 :
pZ
0

kru (t)k dt: (4.29)

It follows by means of 






pZ
0

ru (t) dt







 �
pZ
0

kru (t)k dt;

that
pZ
0

kru (t)k2 dt � max
I
ja (t)j

0@ pZ
0

kru (t)k dt

1A2

: (4.30)

Cauchy-Schwarz inequality once more implies

pZ
0

kru (t)k2 dt � max
I
ja (t)j :p

pZ
0

kru (t)k2 dt: (4.31)

Since

max
I
ja (t)j :p < 1;
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we get

kukL2([0;p];H1
0 (
))

= 0: (4.32)

Which proves that

u (t) = 0; 8t 2 [0; p] : (4.33)

Repeating the same procedure on the intervals [ip; (i+ 1) p] ; we obtain

u (t) = 0; 8t 2 I:

Consequently, u1 = u2

4.6 An example

Consider the following fractional integrodi¤erential equation

RLD
1
2u (t; x)�@xxu (t; x) = tx+

tZ
0

e(t�s)@xxu (s; x) ds; (t; x) 2 [0; T ]�(0; 1) ; (4.34)

u (0; x) = u0 (x) = x (1� x) ; x 2 (0; 1) ; (4.35)

u = 0 on [0; T ]� f0; 1g ; (4.36)

I
1
2u
�
0+
�
= U1 (x) 2 H1

0 (0; 1) : (4.37)

We have

kf (t)k =

0@ 1Z
0

(tx)2 dx

1A
1
2

=
tp
3
� Tp

3
<1;

then f (t) 2 L2 (0; 1) and

kf (t1)� f (t2)k =
jt1 � t2jp

3
� 2

3
jt1 � t2j ;
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which implies that (H10) is satis�ed. On the other hand, it is easy to see that

u0 2 L2 (0; 1), u00 2 L2 (0; 1) and u0 (0) = u0 (1) = 0; hence u0 2 H1
0 (0; 1) : Moreover,

u0 (x) = x (1� x) � 1 therefore, u0 2 L1 (0; 1) and consequently (H11) is also

veri�ed. All conditions of theorem 4:1 and theorem 4:2 are now ful�lled so we deduce

that (4.34)-(4.37) has a unique weak solution.
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CONCLUSION

We think that the presented results in this thesis are considerable and important

contributions in the �eld of fractional di¤erential equations. We proveded several

new and di¤erent results for existence, uniqueness and stability of solutions for some

kinds of fractional di¤erential equations by the use of some methods and skills:

We Exploited the new Banach space discussed by Burton in 2006 [23] to provided

a new uniqueness result for fractional di¤erential equations on unbounded domain

in the submitted paper [42] as well as we investigated a new stability result for a

developed type of mixed fractional di¤erential equations with �nite constant delay

on unbounded interval. Farthermore, we presented a generalization of the fractional

Sobolev spaces presented in the paper [16] in early 2016 as shown in Chapter 3.

In parallel with this, Some existence results for fractional di¤erential equations are

obtained in this fractional Sobolev spaces, see the submitted paper [41]. On the

other hand, we presented a contribution in the fractional partial di¤erential equations

through the published paper [26] in 2018. Where we shown the existence of unique

weak solution for fractional di¤usion integrodi¤erential equations by utilizing the

Rothe�s time discretization method, all our results were supported by con�rmation

examples.

Otherwise, this �eld is very rich in di¤erent discussions ,projections, extentions,

and open questions; therefore di¤erent applications can be launched as a result of the

fractional calculus as the submitted paper [43] which concerned with the existence

of solutions under weak topology in Banach space setting for fractional di¤erential

equations. Moreover, we intend to study the existence of weak solutions fo fractional

di¤erential equations with integrable delay, as well as we foresee the study of the

uniqueness and stability of the solution of such a class of equations by employing the

progressive contractions which discussed by Burton in 2017 [22]. Despite all that,

numerical study of fractional di¤erential equations arouse a lot of our interest and

remains the biggest obsession for us due to their importance in the validation of

theoritical study and their invaluable credibility in physical and tangible reality.
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