République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur Université de Guelma 8 Mai 1945

Faculté des Mathématiques et de l'Informatique et des Sciences de la Matière Département des Sciences de la Matière

> Mémoire de fin d'études Master

Spécialité : Chimie physique

Présenté par : MECIAD Marwa

Etude comparative de la réactivité de la doxorubicine et de son complexe avec l'acide ascorbique par la DFT conceptuelle.

Sous la Direction de : Pr.KADRI Mekki

Juin 2019

Je veux remercier Dieu pour tout ce qu'il fait pour moi car sans lui rien de tout cela ne serait possible.

Je remercie bien évidemment et très sincèrement mon encadreur de mémoire Pr.KADRI Mekki directeur du Laboratoire de Chimie Physique. Mon plus grand reconnaissance pour la confiance qu'il m'a témoignée en m'accueillant dans son équipe, ainsi pour sa disponibilité, son attention, et sa générosité scientifique pour ses conseils très importants durant toute la période de cette recherche. Qu'il trouve ici mes sentiments de gratitude et l'expression de ma vive reconnaissance.

J'exprime mes remerciements les plus sincères pour tous mes enseignants de chimie et a toute l'équipe de formation qui grâce à son savoir-faire, déployé de gros efforts afin d'instaurer un climat d'étude dynamique, sympathique et chaleureux.

Je suis également extrêmement sensible à l'honneur que nous ont fait les enseignants, membres de jury de soutenance, qui ont accepté de juger ce travail et d'en être des rapporteurs

Toute personne qui a participé de près ou de loin, directement ou indirectement à la réalisation de ce travail, merci.

Je remercie mes collègues et mes amies pour les sympathiques moments qu'on a passé ensemble.

Nédicace

Je dédie ce mémoire à ...

A ma famille, elle qui m'a doté d'une éducation digne, son amour a fait de moi ce que je suis aujourd'hui.

À mon père MECIAD Cherif et ma mère SAUDI Radia qui m'a soutenu et encouragé durant ces années d'études qu'ils trouvent ici le témoignage de ma profonde reconnaissance.

A ma sœur Meriem.

A mes frères : Khayer-Dinn et Khalil.

À mes chers amis : Leyla, Souad, Wahiba.

A tous mes amies et collègues.

A tous ceux que j'aime.

Table des matières

Remerciements

Dédicaces

Intro	oduction	1
Cha j	pitre I : Généralités sur la doxorubicine	3
I.1	Doxorubicine	3
I.2	Propriétés et structure chimique	.3
I.3	Pharmacodynamique de la doxorubicine (mécanisme d'action antitumorale)	.4
	I.3.1 Intercalation dans la molécule d'ADN	4
	I.3.2 Inhibition de l'enzyme topoisomérase II	5
	I.3.3 Inhibition de l'enzyme hélicase	5
	I.3.4 Production des radicaux libres	.5
I.4	Cardiotoxicité induite par la doxorubicine	.5
I.5	Stress oxydant	.5
I.6	Les radicaux libres	.6
	I.6.1 Radicaux primaires	.6
	I.6.2 Radicaux secondaires	6
I.7	Espèces réactives de l'oxygène	.6
I.8	Réaction de Haber Weiss et Fenton	7
I.9	Production des radicaux libres	.8
	I.9.1 Voie enzymatique	8
	I.9.2 Voie non enzymatique	8
I.10	les Métabolites toxique de la doxorubicine	.9
Cha j	pitre II : Généralités sur l'acide ascorbique1	1
II.1	Historique de l'acide ascorbique 1	1
II.2	Structure Chimique	1
II.3	Propriétés antioxydantes1	2
	II.3.1 Neutralisation des radicaux libres1	.3
	II.3.2 Régénération de vitamine E1	3
II.5	Acide ascorbique et doxorubicine	4

Chapitre III :Orbitales frontières et DFT conceptuelle	16
III.1 Théorie des orbitales frontières OMF	16
III.2 Principe HSAB (Hard and Soft Acids and Bases)	18
III.3 Théorie DFT	18
III.4 DFT conceptuel	19
III.5 Les descripteurs de la DFT conceptuelle	19
III.5.1 Potentiel chimique électronique	19
III.5.2 Potentiel d'ionisation	19
III.5.3 Affinité électronique	20
III.5.4 L'électronégativité	20
III.5.5 La dureté chimique	21
III.5.6 La mollesse globale	21
III.5.7 Electrophilicité global	22
Chapitre IV : Résultats et discussion	23
IV.1 Performance de B3LYP la prédiction des paramètres géométrique	23
IV.2 Structure géométrique de complexe (DOX-AA)	28
IV.3 Analyse des charges de Mulliken	31
IV.4 Potentiel électrostatique moléculaire (MEP)	32
IV.5 Analyse des orbitales moléculaires frontières	33
IV.6 Les indice de réactivité globaux	35
Conclusion	38
Bibliographie	42

Introduction

Introduction

La doxorubicine (DOX), est l'un des antibiotiques antitumoraux, les plus efficaces appartenant à la classe des anthracyclines, est la base de nombreux protocoles chimiothérapies avec un large spectre d'activité antitumorale leucémie, lymphome malin, cancer du sein, et diverses tumeurs solides. Cependant, cet effet bénéfique est associé à des effets secondaires cardiovasculaires elles surviennent non seulement pendant le traitement, mais aussi plusieurs années suivant la fin du traitement.

Sachant que plus de 50 % des survivants à long terme d'un cancer infantile étaient seuls traités avec DOX ou une autre anthracycline, sont 8 fois plus exposés aux problèmes de santé chronique à l'âge adulte [1], comme la cardiomyopathie, l'insuffisance cardiaque congestive et la dilatation du cœur. Ces manifestations peuvent être irréversibles et ne répondent pas au traitement cardiaque et capable fatal.

La production des radicaux libres conduisant au stress oxydatif est le cœur du problème cardiotoxique relatif au DOX. Ces radicaux libres aussi appelés « Espèces Réactives de l'Oxygène » (ERO) sont produits par divers mécanismes physiologiques, car ils sont utiles pour l'organisme à dose raisonnable [2], mais la production excessive générée par la doxorubicine résulte de stress oxydatif. Ce phénomène est attribué aux caractéristiques moléculaires qui permettent au médicament de subir facilement une réaction redox puis cascade des radicaux libres. Cela a une implication directe sur l'équilibre entre les systèmes de défense antioxydants et les ERO. Les cellules cardiaques sont 10 fois plus sensibles aux modifications des environnements oxydants que les autres tissus [1], donc sensibles aux dommages cellulaires induits par la doxorubicine.

Les antioxydants font aujourd'hui l'objet de nombreuses d'études afin d'apporter des solutions au stress oxydant. La vitamine C, aussi connue sous le nom d'acide ascorbique (AA), est probablement la vitamine la plus populaire. C'est un acide organique, naturellement présent dans les fruits et les légumes, il est notamment réputé pour ses propriétés antioxydantes, réductrices qui protéger les cellules des dommages oxydatifs. Il piège les radicaux libres et les espèces nocives dérivées de l'oxygène. Des études ont montré qu'une combinaison de doxorubicine et d'acide ascorbique peut réduire l'effet nocif cardiotoxique.

Le présent travail se propose de justifier par modélisation moléculaire l'effet positif de l'acide ascorbique sur la doxorubicine lors du traitement antitumoral. L'étude de l'interaction des deux réactifs a été menée par modélisation moléculaire par DFT/B3LYP/6 311++g(d,p). Les configurations ont été déterminées, les orbitales moléculaires ont été identifiées et les réactivités de la doxorubicine et du complexe correspondant ont été prédites moyennant les indices de réactivité globaux.

Ce manuscrit s'articule autour de quatre succincts chapitres :

Le premier chapitre de ce manuscrit est réservé aux mises au point bibliographiques sur la doxorubicine, son mode d'action et son impact sur la cardiotoxicité.

Le deuxième chapitre est une présentation de l'acide ascorbique et son utilisation en tant qu'inhibiteur des réactions radicalaires.

Le troisième chapitre expose des généralités sur la méthode de modélisation moléculaire utilisée au cours de ce travail. Par ailleurs, des généralités et définitions des différents indices de réactivité ont été portées.

Le dernier chapitre est consacré aux résultats et discussion.

Chapitre I : Généralités sur la doxorubicine.

Chapitre I : Généralités sur la doxorubicine.

Les anthracyclines, une famille de médicaments anticancéreux, ont une partie intégrante du régime chimiothérapeutique depuis leur découverte en 1963. La daunorubicine a été la première anthracycline, suivie quelque temps plus tard après par la doxorubicine. Ces deux forment constituent les anthracyclines de première génération. Maintenant il existe 8 anthracyclines utilisées couramment en clinique notamment : la daunorubicine, la doxorubicine, l'épirubicine, l'idarubicine...etc [3].

La doxorubicine est considérée parmi les composés de chimiothérapie le plus efficace, le plus connu, et le plus utilisé de nos jours. Néanmoins, elle a récemment fait l'objet d'un grand nombre d'études en raison de ses effets cardiotoxiques. Une clé pour lutter contre les effets indésirables de la DOX consiste à comprendre le ou les mécanismes sous-jacents et par conséquent, ce chapitre présente des généralités sur le médicament, identifie les facteurs de risque associés à la cardiotoxicité, et éclaire les principaux mécanismes moléculaires.

I.1 Doxorubicine

Doxorubicine (Adriamycine, DOX) a été isolée pour la première fois en 1967 à partir des actinobactéries de genre Streptomyces Peucetius en Italie et France. Le professeur DiMarco est le premier à mettre en évidence les propriétés anticancéreuses de la doxorubicine sur différentes tumeurs expérimentalement [4]. Après elle a été approuvée pour l'usage médical par la *Food and Drug Administration* (FDA) aux États-Unis en 1974, depuis ce temps-elle devenue l'un des médicaments le plus couramment utilisé pour le traitement des tumeurs hématologiques et solides.

La DOX est utilisée contre une vaste variété des cancers et généralement combinée avec d'autres composés de chimiothérapie des classes différentes. Son administration se fait par voie intraveineuse afin d'atteindre rapidement la tumeur sans être trop dégradée avec un temps d'élimination de 30 h [5].

I.2 Propriétés et structure chimique

Le nom chimique est (7S,9S)-7-[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7*H*-tetracene-5,12dione, qui correspond à la formule chimique brute C₂₇H₂₉NO₁₁, sa masse molaire est de 543.525 g/mol [6].

Doxorubicine possède une structure polyaromatique plane (Figure 01). Elle est composée d'une fraction chromophore aglycone, qui consiste en quatre cycles dont deux sont

des cycles aromatiques (B et D). Cette fraction est reliée par une liaison glycosidique avec un aminosucre (daunosamine), qui est responsable de l'hydrosolubilité de la molécule. Les cycles indiqués par les symboles A, B, C et D sont différent l'un de l'autre. Le cycle B avec la structure hydroquinone diffère du cycle C quinone, qui leur permet de fonctionner comme accepteur et donneur d'électrons [7].

Elle diffuse à travers les membranes des cellules cardiaques ou les cellules cancéreuses du fait de leur nature amphiphilique à la fois hydrophile et hydrophobe, et en raison de leur nature polaire, elle se dissout dans l'eau et présente des propriétés à la fois acides et basiques. Elle est fluorescente, et son suffixe *Rubicine* rappelle sa couleur rouge intense bien visible dans les flacons de poudre pour solution injectable [8].

Figure 01 : Structure de la doxorubicine.

I.3 Pharmacodynamique de la doxorubicine (mécanisme d'action antitumoral)

La doxorubicine est administrée par voie intervenues, et est rapidement éliminée du sang et distribuée vers les autres tissus comme le foie, les poumons ou le cœur. Une fois dans les organes cibles, la DOX traverse rapidement le cytoplasme des cellules par diffusion simple, puis migre à l'intérieur du noyau. Elle agirait sur les cellules cancéreuses selon plusieurs modes d'action :

I.3.1 Intercalation dans la molécule d'ADN

La présence d'un anneau planaire dans la structure multi-cyclique de la doxorubicine leur permet de former des ponts que s'interposent entre deux paires de bases adjacentes, la DOX modifie la structure 3D de l'ADN et empêche ainsi la fixation des différents enzymes ce qui inhibe la réplication, donc la synthèse protéique nécessaire à la survie de la cellule.

I.3.2 Inhibition de l'enzyme topo-isomérase II

La topo-isomérase II est une enzyme nucléaire chargée de réguler les conversions topologiques de l'ADN [9]. La doxorubicine se relie avec le topo-isomérase II par des liaisons covalentes stables (irréversibles), formant ainsi un complexe topo-isomérase II-ADN-DOX ce qui provoque l'arrêt du cycle cellulaire.

I.3.3 Inhibition de l'enzyme hélicase

Hélicase est une enzyme qui catalyse le désenroulèrent de la double hélice d'ADN pour permettre la réplication. Des nouvelles études estiment l'inhibition de cet enzyme par la doxorubicine [9].

I.3.4 Production des radicaux libres

La production des radicaux libres après fixation sur l'ADN jouent un rôle secondaire dans les effets antitumoraux de la doxorubicine. Néanmoins, ces radicaux libres sont responsables de la cardiotoxicité. De plus, l'usage des molécules antioxydantes en même temps que l'administration de DOX n'affecte pas son activité antinéoplasique.

I.4 Cardiotoxicité induite par la doxorubicine

La doxorubicine présente une cardiotoxicité dose dépendante validée par les études cliniques, prise en compte dans l'initiation et la persistance des traitements, trois types de cardiotoxicité peuvent être survenir : une cardiotoxicité aigüe apparait pendant un peu de temps après le traitement, une cardiotoxicité subaigüe qui apparaît quelques semaines après, une cardiotoxicité chronique qui se manifeste dans les années suivantes après le traitement.

La toxicité relative au DOX est multifactorielle dépend de plusieurs éléments. Des études ont montré que plusieurs voies sont impliquées, y compris à la génération de stress oxydant, les dommages à l'ADN causent l'apoptose des cellules cardiaque, le dysfonctionnement des mitochondries, et d'autres mécanismes.

La génération d'un stress oxydant est le mécanisme le plus largement étudié. Les cellules myocardiques sont très actives, et plus sensibles aux modifications des environnements oxydants et très riches en mitochondries. On assiste à une accumulation de DOX du fait de sa grande affinité au phospholipide cardiolipine, ajouté à moindres capacités des défenses anti-radicalaires, pourrait expliquer la susceptibilité accrue du cœur comparé à d'autres organes [10].

I.5 Stress oxydant

En 1991, Sies [11] a défini la notion de stress oxydant comme l'incapacité de l'organisme à se défendre contre l'agression radicalaire des espèces réactives de l'oxygène,

suite à un déséquilibre lié, soit à une production accrue des ERO, soit à une diminution de la capacité de défenses antioxydantes cellulaires. La pollution, l'alcoolisme, l'exposition prolongée au soleil ou à des radiations, sont des sources de production des ERO. Le stress oxydant peut être de courte durée et, grâce aux systèmes antioxydants, limité, avec un retour rapide à l'état physiologique.

I.6 Les radicaux libres

Un radical libre est une espèce chimique instable, très réactive. Comprend d'un ou plusieurs électrons non appariés sur sa couche externe, ce qui leur confère un fort degré de réactivité [12]. C'est ainsi que ce radical va naturellement chercher à arracher un électron à d'autres molécules situées dans un environnement proche. La molécule attaquée devient ellemême un radical libre et initient ainsi une réaction en chaine [13]. En peut distinguer deux types des radicaux libres :

I.6.1 Radicaux primaires

Un ensemble des composés radicalaires qui jouent un rôle particulier en physiologie, dérivent de l'oxygène par des réductions a un électron tels l'anion superoxyde O_2^{\bullet} et le radical hydroxyle OH[•], ou de l'azote tel le monoxyde d'azote NO[•] [12]. D'autres espèces dérivées de l'oxygène, comme l'oxygène singulet ¹O₂, le peroxyde d'hydrogène H₂O₂ ou l'acide peroxynitreux HNO₃, que ne sont pas des radicaux libres, mais sont aussi réactifs et peuvent être des précurseurs des radicaux.

I.6.2 Radicaux secondaires

Issus de la réaction des radicaux libres primaires avec les molécules biochimiques de la cellule (lipides, protéines, glucides...). Comme les radicaux peroxydes RO_2^{\cdot} , les hydroperoxy des RO_2H , et les radicaux alkoxyles RO^{\cdot} [12].

La réactivité des radicaux varie selon leur nature, l'anion radicalaire superoxyde O_2^{\bullet} comme le monoxyde d'azote NO[•] ne sont pas très réactifs, mais constituent des précurseurs d'autres espèces plus réactives. Comme les radicaux peroxydes RO₂[•], et surtout les radicaux hydroxyles OH[•] que sont extrêmement réactifs avec la plupart des molécules des tissus vivants. Les radicaux qui endommagent les systèmes biologiques sont, en particulier des radicaux libres d'oxygène, plus connus sous le nom de « Espèces Réactives de l'Oxygène ERO » [2].

I.7 Espèces réactives de l'oxygène

Les ERO sont une famille d'entités chimiques regroupant les dérivés radicalaires et non radicalaires dont la toxicité est importante [14]. Les espèces réactives de l'oxygène ont

longtemps été considérées comme des sous-produits toxiques du métabolisme normal de l'oxygène et impliquées dans de nombreuses pathologies (Figure 02).

Type des ERO	Nom de l'ERO	Symbole chimique
	Anion superoxyde	O2•-
	Radical hydroxyle	OH.
	Radical peroxyle	ROO'
Radicaux libres	Radical alkoxyle	RO'
oxygenes	Radical oxyde nitrique	NO
	Peroxinitrite	ONOO'
	Hypochlorite	ClO.
	Peroxyde d'hydrogène	H_2O_2
Dérivés oxygénés	Hydroperoxyde	ROOH
non radicatan es	Oxygène singulet	1/2O ₂
	Nitroperoxyde	ONOOH

Tableau 01: Les espèces réactives de l'oxygène ERO.

I.9 Réaction de Haber Weiss et Fenton

La réaction de Haber – Weiss et Fenton est responsable de la génération des radicaux hydroxyles OH' à partir de peroxyde d'hydrogène H_2O_2 et de superoxyde O_2 ⁻ catalysés par les ions de fer. Cette réaction peut se manifestes dans tous les compartiments cellulaires, elle représente une source potentielle du stress oxydatif.

La chaîne est initiée par la réaction de Fenton qui, est définie comme la réaction entre le fer Fe^{2+} et le peroxyde d'hydrogène H₂O₂. Elle produit l'ion ferrique Fe^{3+} , un radical hydroxyle OH^{*}, et un ion hydroxyle OH^{*}. Ensuite, le radical hydroxyle réagit avec H₂O₂ et donnant naissance à l'ion superoxyde O₂^{*}. Puis, le superoxyde réagit à nouveau avec H₂O₂, il se forme un radical hydroxyle et un anion hydroxyle OH^{*}, cette partie de la réaction est connue sous le nom de « réaction de Haber-Weiss ». La réaction globale est représentée comme suit [15] :

• Réaction de Fenton :

 $Fe^{+2} + H_2O_2 \rightarrow Fe^{+3} + OH^{\bullet} + OH^{\bullet}.$

• Réactions de Haber-Weiss :

 $H_2O_2 + OH^{\bullet} \rightarrow H_2O + O_2^{-} + H^+.$ $H_2O_2 + O_2^{-} \rightarrow O_2 + OH^{-} + OH^{\bullet}.$

I.8 Production des radicaux libres

La formation des radicaux libres est déterminée pour expliquer la toxicité cardiaque, et moins la cytotoxicité antitumorale [16]. La doxorubicine produit les radicaux libres, et plus particulièrement des espèces réactives de l'oxygène (ERO) via différents mécanismes :

I.8.1 Voie enzymatique

La doxorubicine peut subir une réaction de réduction à un électron que se déroule dans la plupart des compartiments cellulaires. Sa réaction est catalysée par des flavines réductases telles que la NADH déshydrogénase ou la NADPH réductase mitochondriale. La DOX est réduite en dérivé semi quinone par l'addition d'un électron sur le cycle C quinone. En présence de dioxygène, ce dérivé radicalaire est rapidement oxydé, et donne son électron au dioxygène moléculaire pour former un anion superoxyde O_2^{\bullet} .

L'anion superoxyde est transformé en peroxyde d'hydrogène H_2O_2 par le superoxyde dismutase SOD ou peut se produire de façon spontanée. H_2O_2 peut ensuite être décomposée en eau et oxygène biomoléculaire puis l' O_2^{\bullet} réagir avec H_2O_2 selon la réaction de Haber Weiss et les radicaux sont produits de ce façon.

Figure 03: Formation des ERO par réduction à un électron de la doxorubicine.

I.8.2 Voie non enzymatique

Le fer est un déterminant majeur de l'oxydoréduction cellulaire. Il participe à la réaction de Fenton comme donneur d'électron à superoxyde d'hydrogène, aboutissant à la formation d'une espèce radicalaire puissante, le radical hydroxyle [17]. La doxorubicine réagit avec le fer après l'avoir libéré de ses sites de stockage par attaque les protéines ferritine et transferrine, provoquant ainsi la libération de ces ions.

Le Fe^{3+} se lie alors à trois molécules de DOX à partir des fonctions cétone hydroxyle des cycles B et C, pour former un complexe ternaire très stable : Fe^{3+} –(DOX)₃ (Figure 04). Ce

complexe subit un cycle interne d'oxydoréduction, donnant naissance à un complexe Fe^{2+} -(DOX)₃. Ce dernier peut céder son électron supplémentaire à l'oxygène moléculaire et aboutir ainsi à la formation de O₂⁻⁻ et par la suite la formation des autres radicaux libres [6].

D'autres ions métalliques telles que le cuivre Cu(II) ou le magnésium Mg(II) peuvent se substituer le fer (III) pour former un complexe avec la doxorubicine et mener à la formation des ERO. Les chélateurs du fer pourraient représenter une nouvelle approche pour interrompre le cycle du stress oxydant induit par le fer.

Figure 04: Formation des ERO par voie non enzymatique.

I.10 Métabolite toxique de la doxorubicine

La doxorubicine est principalement métabolisée dans le cytosol des cardiomyocytes par l'enzyme NADPH-dépendantes. Deux métabolites actifs peuvent être obtenus : un métabolite appelé agly-doxorubicine qui résulte de la réduction de la liaison O-glycosidique et de la perte de la daunosamine, et un métabolite alcool secondaire issue de la réduction de la fonction cétone en C13 pour former la doxorubicinol qui est moins actif sur le plan tumoral, mais plus toxique que la molécule parentale [6].

Ces deux métabolites actifs jouent également un rôle dans la cardiotoxicité induite. En effet, les métabolites aglycones altèrent la fonction mitochondriale. Bien que le doxorubicinol ne puisse réagir et produire des ERO [3], ses effets cardiotoxiques sont potentialisés notamment par dérégulant la disponibilité des ions ferriques et en produisant ainsi un stress oxydatif.

Figure 05 : les Formes de DOX, doxorubicinol, et agly-doxorubicine.

Chapitre II :

Généralités sur l'acide ascorbique.

Chapitre II : Généralités sur l'acide ascorbique.

Plus de 80 ans après sa découverte, l'acide ascorbique est passé de la prévention du scorbut, à son utilisation potentielle comme un médicament thérapeutique pour le traitement du cancer. La vitamine C joue un rôle essentiel dans le métabolisme des êtres humains et des certaines espèces animales. De plus, elle possède des propriétés biologiques très important, le plus connue de ses propriétés est son pouvoir antioxydant lutent conter les radicaux libres.

Ce chapitre est consacré à une description générale des physiologiques de l'acide ascorbique, et leur implication dans le système anti-radicalaire contre le stress oxydant [18], et suggère certaines des stratégies thérapeutiques visant à atténuer, voire améliorer, la cardiotoxicité induite par la doxorubicine, et de vérifier l'authenticité des revendications faites.

II.1 Historique de l'acide ascorbique

L'acide L-ascorbique connu sous le nom de vitamine C, est un composé organique hydrosoluble, très répandu dans le monde vivant. Elle fût découverte pour la première fois au 18e siècle lors d'un voyage maritime. Les matelots étaient atteints d'une très grave maladie : le scorbut, un médecin de la marine anglaise, James Lind démontra l'efficacité de quelques gouttes de jus de citron ou d'orange dans le traitement préventif et curatif du scorbut. C'est en 1927 qu'un chimiste hongrois, Szent-Györgyi, isole la vitamine C. Il retrouve une substance inconnue en quantité importante dans les glandes surrénales, mais aussi dans les choux et les oranges. Szent-Györgyi la nomme « ignose » en référence à la terminologie des sucres « ose » et au fait que ce composé était encore inconnu. Lorsqu'il découvrit qu'il était un acide constitué de 6 atomes de carbone, il lui préféra le nom d'acide hexuronique. En 1932, Szent-Györgyi et King découvrent que l'acide hexuronique prévient le scorbut. Grâce à cette découverte, la molécule est renommée en 1933 "acide ascorbique" [19].

II.2 Structure Chimique

La vitamine C est une lactone soluble dans l'eau que l'on trouve chez les animaux et chez les plantes, il est obtenu par le corps humain par le biais des sources exogènes comme les fruits et les légumes, car le corps humain n'a pas la capacité de synthétiser ce nutriment de manière endogène [20].

Il est de formule chimique $C_6H_8O_6$, sa nomenclature IUPAC est 2-oxo-L-theo-hexono-1,4-lactone-2,3-enediol. La vitamine C appartient aux groupes des sucres à 6 atomes de carbone et est un dérivé du D-Glucose. Elle est composée d'une fonction cétone, d'un cycle lactone, d'une fonction ène-diol celle-ci est très sensible à l'hydrolyse. Elle est responsable de l'acidité de la molécule et de son pouvoir antioxydant, et de deux fonctions alcools : l'une primaire et l'autre secondaire. Il existe deux formes chimiques d'acide ascorbique : la forme réduite (acide ascorbique ; AA), et la forme oxydée (acide déhydroascorbique ; DHA). La vitamine C peut être extrait de la nature ou créé par voie de synthèse à partir du D-Glucose [19].

Figure 06 : Les deux formes de l'acide ascorbique.

L'acide déhydroascorbique est obtenu par hydrolyse ou oxydation de la fonction ènediol. L'acide déhydroascorbique peut être reconverti en acide ascorbique pour être réutilisé ou peut être métabolisé [21]. La réaction entre la forme réduite et oxydée de l'acide ascorbique est réversible, selon le mécanisme suivant :

Figure 07 : Représentation du système redox : acide ascorbique, radical ascorbique libre, et acide déhydroascorbique.

II.3 Propriétés antioxydantes :

Les antioxydants sont des composés qui peuvent atténuer, inhiber ou prévenir l'oxydation des matières oxydables en éliminant les radicaux libres et en diminuant le stress oxydatif [22]. L'effet antioxydant de l'acide ascorbique peut être direct par inhibition des radicaux libres ou indirect par régénération des tocophérols II (vitamine E), un autre antioxydant peut protéger divers substrats biologiques (protéines, acides gras, ADN) de l'oxydation [23].

II.3.1 Neutralisation des radicaux libres

Le rôle antioxydant de l'acide ascorbique découle de ses propriétés réductrices. Ils neutralisent les radicaux libres en donnant leur électron manquant. Il réduit l'hydroxyle sous la réaction [18] :

$$AH^- + HO^{\bullet}_2 \longrightarrow A^{\bullet} + H_2O_2$$

L'AA neutralise les radicaux libres par oxydoréduction grâce à sa fonction ène-diol, est se transformer en radical ascorbyle. L'ascorbate subit facilement un autre deux réactions d'oxydations consécutives, bien que réversibles, pour générer l'intermédiaire déshydroascorbate (DHA) [24]. Par cette réaction, l'AA inhibe ainsi la réaction radicalaire en chaîne empêchant la dégradation du mal constituant dans la cellule.

Figure 08 : Transfert d'un électron de l'antioxydant vers le radical libre.

II.3.2 Régénération de vitamine E

La vitamine C n'est pas seulement un acteur de l'arsenal antioxydant elle apporte une aide précieuse à d'autres antioxydants nécessaires à notre santé. Elle inclut les défenses enzymatiques (catalase, glutathion peroxydase GSH et superoxyde dismutase SOD) ainsi que d'autres défenses non enzymatiques (vitamine E, acide urique et les caroténoïdes). Par exemple, avec la vitamine E (ou « α -tocophérol »), la vitamine C agit comme un coantioxydant aidant la vitamine E à se régénérer après oxydation, recyclant ainsi efficacement cet important fixateur de radicaux liposolubles [25].

Figure 09 : Régénération du tocophérol (vit. E) par l'acide ascorbique (vit. C).

II.4 Acide ascorbique et doxorubicine

La cardiotoxicité induite par la doxorubicine a été associée à de nombreux facteurs inclurent la formation des radicaux libres ou l'accumulation des produits métaboliques toxiques de DOX dans le cœur. Le stress oxydatif, cependant, est l'un des multiples mécanismes biochimiques par lequel DOX exerce ses effets anticancéreux, il est donc obligatoire de trouver des dérivés de DOX-antioxydants qui réduisent le stress oxydatif dans les cardiomyocytes, mais ne perdent pas leur cytotoxicité à l'égard des cellules tumorales [26].

Figure 10 : Formule d'un composé hybridée entre la doxorubicine - antioxydant.

Les rôles protecteurs de la vitamine C ont été démontrés dans des nombreuses expériences précédentes. En tant qu'antioxydant puissant, la vitamine C inhibe la production des radicaux libres et atténue les dommages oxydatifs.

De nombreux nouveaux analogues, et dérivés de l'antibiotique doxorubicine avec des différents antioxydants ont été formulés pour les études expérimentales et théoriques, et les résultats obtenus sont très agréables. L'acide ascorbique peut aider DOX en piégeant les radicaux libres et en réduisant le stress oxydatif, protègent contre les modifications biochimiques et histologiques induites par DOX dans le tissu cardiaque, soit en restaurant l'activité des antioxydantes endogène dans les cellules cardiaque comme la vitamine E, soit en tant qu'antioxydant seul, l'aide à l'intercalation de la DOX à l'ADN, une étude théorique a montré qu'un complexe de vitamine C et de DOX, augmenter l'énergie de liaison du DOX à l'ADN, et protégeant l'ADN des dommages oxydatifs. L'utilisation prophylactique de l'acide ascorbique dans la cardiomyopathie semble être prometteuse en raison de son faible coût et de sa forte propriété antioxydant [27].

Chapitre III : Orbitales frontières et DFT conceptuelle.

Chapitre III : Orbitales frontières et DFT conceptuelle.

La réactivité chimique et la modélisation moléculaire sont deux axes qui constituent un enjeu majeur de la recherche moderne en chimie. La réactivité en chimie est un concept clé, car elle est fortement associée aux mécanismes réactionnels, ce qui permet de comprendre les réactions chimiques et d'améliorer les procédures de synthèse pour obtenir de nouveaux matériaux [28].

Les méthodes de chimie quantique permettent également de calculer diverses propriétés électroniques des systèmes moléculaires, et offre la possibilité d'étudier la réactivité chimique à l'aide de plusieurs théories [29]. Dans le présent chapitre, nous avons présenté les théories les plus utilisées pour l'étude de la réactivité chimique [30].

- Théorie des orbitales frontières (FMO).
- Théorie des acides et bases durs et mous (HASB).
- Théorie de la fonctionnelle de la densité électronique (DFT).
- Quelques modèles théoriques pour l'étude de la réactivité chimique.

III.1 Théorie des orbitales frontières OMF

On peut distinguer parmi les orbitales moléculaires (OM), deux types d'orbitales : les orbitales HOMO (HO) et LUMO (BV). Ces orbitales spécifiques sont nommées "orbitales frontières" [37].

HOMO : *Highest Occupied Molecular Orbital* (plus haute orbitale moléculaire occupée), HO (pour Haute Occupée).

LUMO : *Lowest Unoccupied Molecular Orbital* (plus basse orbitale moléculaire inoccupée), BV (pour Basse Vacante).

En 1952, le chimiste japonais Ken'ichi Fukui a démontré l'existence d'une corrélation entre la densité électronique des orbitales moléculaires frontières et la réactivité chimique dans les hydrocarbures aromatiques [32], et a eu l'idée de limiter l'étude de la réactivité uniquement aux deux interactions HO-BV. D'après Fukui, sont les seules deux orbitales moléculaires présentent un réel intérêt [38] : HOMO-HO traduit le caractère électro-donneur (nucléophile) de la molécule. Plus l'énergie de cette OM est élevée, plus la molécule cédera facilement des électrons, et LUMO-BV traduit le caractère électro-accepteur (électrophile) de la molécule. Plus l'énergie de cette OM est faible, plus la molécule acceptera facilement des électrons.

Figure 11 : Interaction entre les deux orbitales réactives.

La théorie FMO permet d'analyser la réactivité des molécules en termes d'interactions des orbitales moléculaires frontières des réactifs (figure11). La stabilisation du complexe formé entre deux molécules dépend de la différence d'énergie entre les orbitales interagissent, plus les orbitales des réactifs sont proches, plus forte sera l'interaction entre ces orbitales [33], et la stabilisation augmente.

Figure 12 : Transition des électrons du donneur vers l'accepteur.

L'approximation FMO peut paraître sévère, mais elle a été justifiée à posteriori par son puissant pouvoir explicatif des phénomènes chimiques, dont la réactivité et la sélectivité chimique.

La théorie FMO est basée sur les approximations suivantes [33] :

- 1. Toutes les interactions entre OM vacante-vacante, occupées-occupées, à l'exception des interactions frontalières HOMO-LUMO, peuvent être négligées.
- 2. L'état de transition est modélisé par un complexe formé par les réactifs, est représentée par un échange d'électrons entre :

-HOMO du donneur (nucléophile).

-LUMO de l'accepteur (électrophile).

- 3. La réaction la plus probable est celle qui correspond à la plus faible différence d'énergie entre HOMO et LUMO.
- 4. La théorie des OF ne s'applique qu'aux réactions biomoléculaires.

III.2 Principe HSAB (Hard and Soft Acids and Bases)

En 1963, Pearson introduite le principe HASB des acides et des bases dures et molles de Lewis, il a proposé de classer les ions et les molécules en deux catégories « dures : un ion ou groupe fonctionnel que sont non-polarisables », et « mous : un ion ou groupe fonctionnel que sont polarisables » [34]. Cette théorie qualitative est principalement utilisée pour donner un sens à la stabilité des réactions chimiques [31], la sélectivité chimique, et aide à comprendre les facteurs dirigeant la réaction, mais il est important de réaliser que le concept dur / mou n'ont rien à voir avec la force de l'acide ou de la base. Un acide ou une base peut être dur ou mou et également être faible ou fort.

D'après cette notion en peut classer les molécules selon quatre catégories :

- Acide dur : une espèce de type accepteur, de forte charge positive, de petite taille. Ses électrons externes facilement excitables et avec des LUMO à haute énergie.
- Acide mou : une espèce de type accepteur, de faible charge positive, volumineux, présentant des électrons externes facilement excitables et avec des LUMO à basse énergie.
- Base dure: une espèce de type donneur, de faible polarisabilité, de forte électronégativité, elle est difficile à oxyder présentant des orbitales occupée (HO) de grande énergie.
- Base molle: une espèce de type donneur, fortement polarisable, de faible électronégativité, et facilement oxydable présentant des orbitales occupées (HO) de basse énergie.

La théorie HSAB constate que les acides durs préfèrent de réagir avec les bases dures et les acides mous préfèrent de réagir avec des bases molles. Ce principe qualitatif est simplement une réaffirmation des résultats expérimentaux, utilisés dans le cas où l'explication qualitative des réactions chimiques, et ne pas une méthode quantitative basées sur des calculs mathématiques. C'est ainsi la théorie des orbitales frontières et la théorie DFT qui lui donne le sens quantitative, ses caractéristiques peuvent se mesurer en calculant l'écart énergétique entre l'orbitale HO et BV [29].

III.3 Théorie DFT

La théorie de la fonctionnelle de la densité électronique (*Density Functional Theory* DFT) est l'un des principaux outils de la chimie quantique [30], est une méthode de calcul de la structure électronique et toutes les propriétés de l'état fondamental dont l'énergie utilise la

fonction de la densité électronique, $\rho(r)$ comme variable de base à la place de la fonction d'onde usuelle ψ pour décrire le système chimique $E[\rho(r)]$.

III.4 DFT conceptuelle

L'un des traits les plus important du fonctionnel de densité est son aptitude à définir et à élucider des concepts chimiques importants de structure moléculaire et de réactivité. La DFT conceptuelle est une branche de DFT dans laquelle on essaie d'extraire de la densité électronique des concepts, et principes pertinents qui permettent de comprendre et de prédire le comportement chimique d'une molécule. Parr et ses collaborateurs, et plus tard une vaste communauté de chimistes théoriciens, ont été en mesure de donner des définitions précises de concepts chimiques déjà connus et utilisés depuis de nombreuses années dans diverses branches de la chimie, l'électronégativité en étant l'exemple le plus frappant [36] la dureté, le potentiel chimique, la mollesse, l'électrophilicité. Ainsi la DFT est utile non seulement pour leur calcul, mais aussi de mieux comprendre.

III.5 Les descripteurs de la DFT conceptuelle

III.5.1 Potentiel chimique électronique

Le potentiel chimique μ est défini en thermodynamique, par la dérivée partielle de l'énergie par rapport au nombre d'électrons N [37]. Cette propriété mesure la tendance des électrons à s'échapper d'une molécule [30].

Selon Parr, le multiplicateur de Lagrange qui est dérive de la théorie de la fonctionnelle de la densité (DFT), peut être défini comme le potentiel chimique électronique μ est la même déduite par Pearson est l'opposée de l'électronégativité définie selon Mulliken [38].

 μ = - χ

Le potentiel chimique μ peut être calculé selon :

$$\mu = \frac{1}{2} (\varepsilon_{HOMO} + \varepsilon_{LUMO})$$

III.5.2 Potentiel d'ionisation I

C'est l'énergie nécessaire pour arracher un électron d'un système. C'est-t-dire l'énergie qu'il faut fournir à un atome au une molécule neutre (N électrons) pour arracher un électron(le moins lié), et former un cation (N-1 électrons) (M+I \rightarrow M⁺+e) [39] c'est l'opposé de celui d'affinité électronique.

$$I = E(N-1) - E(N)$$

III.5.3 Affinité électronique

C'est la quantité d'énergie dégagée à la suite de la capture d'un électron par un atome neutre. C'est-à-dire le gain d'énergie qu'accompagne le passage d'un système neutre à un anion [39]. Plus l'affinité électronique est grande, plus la capture d'un électron par l'atome dégage de l'énergie et plus l'ion négatif résultant est stable ($M + \grave{e} - M^{-} + A$).

$$A = E(N) - E(N+1)$$

Ces énergies peuvent être approchées par les énergies des orbitales frontières HOMO et LUMO comme suit [36]:

$$A = -\varepsilon_{LUMO}$$
$$I = -\varepsilon_{HOMO}$$

III.5.4 L'électronégativité

C'est le chimiste et physicien Linus Pauling qui au XXème siècle a introduit le concept d'électronégativité [39]. L'électronégativité est définie par la tendance qu'à un atome à attirer les électrons des liaisons.

-Un élément attracteur (oxydent) est dit électronégatif, et possède un χ élevé donc une affinité électronique grande.

-Un élément donneur (réducteur) est dit électropositif, et possède un χ faible avec une énergie d'ionisation grande.

L'identification du potentiel chimique électronique μ avec l'électronégativité de Mulliken, χ qui est une mesure de la résistance à la perte de densité électronique, offre une méthode systématique pour évaluer l'électronégativité des atomes et des molécules aux échelles existantes établies par Pauling [44]. À partir des équations suivantes :

$$\mu = -\chi$$
$$\mu = \left(\frac{\delta E}{\delta N}\right)_n = -\chi$$

Plus la différence d'électronégativité entre 2 atomes est grande, plus le nuage électroni que qui relie les 2 atomes est déformé, plus la liaison est dite polarisée et vice versa plus la différence est petite plus la liaison est covalente.

$$\chi = -\frac{1}{2}(\varepsilon_{LUMO} + \varepsilon_{HOMO})$$

III.5.5 La dureté chimique

En 1963, Pearson a établi une classification des acides et des bases de Lewis, selon le principe HSAB (dur et mou). Il a proposé que, dans une réaction acide / base, les interactions les plus favorables aient lieu entre dur / dur ou mou / mou paires [35].

Dans la DFT conceptuelle, Parr a défini, en 1983 une expression quantitative de la dureté chimique η , qui peut être exprimée par les modifications du potentiel chimique électronique μ du système par rapport au nombre d'électrons N à un potentiel externe fixe v(r) [36]. Cette propriété est définie par l'expression de la dérive seconde de l'énergie par rapport au nombre d'électrons [29], suivant :

$$\eta = \left(\frac{\partial^2 E}{\partial N^2}\right) = \left(\frac{\partial \mu}{\partial N}\right)$$

La dureté chimique peut être vue comme la résistance d'un système moléculaire au transfert d'électron, qu'il s'agisse d'un gain ou d'une perte. Il s'agit donc également d'une mesure de la stabilité d'une molécule au sens où plus la résistance à un transfert de charge n'est élevé, moins ce dernier a de chance de se produire [40].

En appliquant l'approximation par différence finie, on obtient l'expression simple suivante :

$$\eta = \frac{I - A}{2}$$

La dureté chimique est peuvent être calculés à partir des énergies des orbitales frontières ε_{HOMO} et ε_{LUMO} .

$$\eta = \frac{(\varepsilon_{LUMO} - \varepsilon_{HOMO})}{2}$$

Dans le travail original de Parr et Pearson un facteur ½ a été artificiellement ajouté pour créer une cohérence avec la définition opératoire du potentiel chimique [29].

$$\eta = (\varepsilon_{LUMO} - \varepsilon_{HOMO}) = I - A$$

III.5.6 La mollesse globale

Bien avant l'identification de la dureté a la drivée seconde de l'énergie l'inverse de la dureté est la mollesse qui traduit une mesure de la polarisabilité de la molécule définie par :

$$S = \frac{1}{2\eta} = \frac{1}{I - A}$$

III.5.7 Electrophilicité globale

En 1999, Parr introduit l'indice d'électrophilicité, qui est une mesure de la stabilisation de l'énergie d'une molécule lorsqu'elle acquiert [36], une charge électronique supplémentaire de l'environnement. L'indice d'électrophilicité ω est lié au potentiel chimique μ par la relation suivante [30] :

$$\omega = \frac{\mu^2}{2\eta}$$

L'indice d'électrophilicité inclut la tendance d'un électrophile à acquérir une quantité supplémentaire de densité électronique, ainsi un bon électrophile est une espèce caractérisée par un grand μ valeur et une faible valeur η [36].

De plus, le nombre maximum d'électrons qu'un électrophile peut acquérir est donné par l'expression suivante:

$$\Delta N_{max} = -\frac{\mu}{\eta}$$

Chapitre IV : Résultats et discussion.

Chapitre IV : Résultats et discussion

IV.1 Performance de B3LYP àla prédiction des paramètres géométriques

La molécule de la doxorubicine a été optimisée par DFT/B3LYP /6 311++G(d,p) en phase gazeuse. Le calcul a été effectué par GAUSSIAN 09 et la configuration optimisée a été visualisée par Gauss view 5.0. La molécule d'intérêt optimisée est représentée sur la figure 13.

Figure 13 : Structure moléculaire optimisée avec B3LYP / 6-311 ++ G (d,p) de la doxorubicine.

Les valeurs des paramètres géométriques (langueurs de liaison, angles de liaison) obtenues ont été comparées aux résultats expérimentaux cristallographiques DRX [41]. Sont representé dans les tableaux suivants :

Liaison(Å)	B3LYP	Liaison(Å)	B3LYP
O1-C13	1.4618	 C19-C20	1.5276
O1-C19	1.4474	C19-H45	1.0945
O2-C19	1.4036	C20-C21	1.5404
O2-C23	1.4453	C20-H46	1.0938
O3-C14	1.4276	C20-H47	1.0931
O3-H51	0.9666	C21-C22	1.5305
O4-C22	1.4314	C21-H48	1.0949
O4-H59	0.961	C22-C23	1.5373
O5-C24	1.3612	C22-H49	1.097
O5-H60	0.9679	C23-C29	1.5198
O6-C26	1.3586	C23-H50	1.0974
O6-H61	0.9626	C24-C27	1.397
O7-C25	1.2147	C25-C30	1.5138
O8-C30	1.4042	C26-C28	1.4056
O8-H63	0.9697	C27-C28	1.4145
O9-C31	1.214	C27-C31	1.5049
O10-C32	1.217	C28-C32	1.4933
O11-C35	1.3506	C29-H52	1.0912
O11-C39	1.4219	C29-H53	1.0923
N12-C21	1.4587	C29-H54	1.0937
N12-H55	1.0144	C30-H57	1.0978
N12-H56	1.0151	C30-H58	1.0973
C13-C15	1.5308	C31-C33	1.4916
C13-C17	1.5162	C32-C34	1.5013
C13-H40	1.0976	C33-C34	1.4028
C14-C15	1.5377	C33-C35	1.4166
C14-C16	1.5393	C34-C36	1.3968
C14-C25	1.5336	C35-C37	1.3994
C15-H41	1.0934	C36-C38	1.3866
C15-H42	1.0909	C36-H62	1.0818
C16-C18	1.5131	C37-C38	1.3944
C16-H43	1.0966	C37-H64	1.0812
C16-H44	1.097	C38-H65	1.0843
C17-C18	1.395	C39-H66	1.0953
C17-C24	1.4088	C39-H67	1.0883
C18-C26	1.4102	C39-H68	1.0949

Tableau 02 : Comparaison des valeurs de longeurs de liaison obtenus par la DFT /B3LYP auxrésultats de la DRX.

Angles	B3LYP,°	Angles	B3LYP, °
C13-O1-C19	116,2561		107 (100
C13-C15-H41	109,0384	H46-C20-H47	107,6198
С13-С15-Н42	109,2484	N12-C21-H20	115,4981
C14-C15-H41	108,1859	N12-C21-C22	109,5191
C14-C15-H42	110,9825	N12-C21-H48	107,304
H41-C15-H42	107,9163	C20-C21-C22	108,2594
C14-C16-H43	113,1501	C20-C21-H48	108,8095
C14-C16-C18	107,1425	C22-C21-H48	107,1461
C14-C16-H44	107,8952	O4-C22-C21	106,7757
C18-C16-H43	109,6846	O4-C22-C23	112,836
C19-O2-C23	117,1441	O4-C22-H49	110,0193
C14-O3-H51	109.0077	C21-C22-C23	110,2433
C22-O4-H59	109,5271	C21-C22-H49	108,555
C24-O5-H60	107.2363	C23-C22-H49	108,336
C26-O6-H61	110.046	O2-C23-C22	112,3369
C30-O8-H63	106,8145	O2-C23-C29	106,1325
C35-O11-C39	119,3458	O2-C23-H50	108,6222
C21-N12-H55	111,4218	C22-C23-C29	113,625
C21-N12-H56	110,3214	C22-C23-H50	106,9577
H55-N12-H56	108,4361	C29-C23-H50	109,0643
O1-C13-C15	112,7662	O5-C24-C17	119,4505
O1-C13-C17	106,7716	O5-C24-C27	120,1529
O1-C13-H40	106.7347	O7-C25-C14	120,8758
C15-C13-C17	113,8685	O7-C25-C30	120,0225
C15-C13-H40	108.3546	C14-C25-C30	119,0966
C17-C13-H40	108.0225	O6-C26-C18	120,425
O3-C14-C15	111.7045	O6-C26-C28	119,0791
O3-C14-C16	111.0918	C17-C24-C27	120,3278
O3-C14-C25	107.326	C18-C26-C28	120,4903
C15-C14-C16	108,7142	C24-C27-C28	119,6817
C15-C14-C25	108,7934	C34-C36-C38	117,259
	,	O11-C35-C37	123,2947
			1

Tableau 03 : Comparaison des valeurs des angles de liaison obtenus par la DFT /B3LYP aux résultatsde la DRX.

Chapitre IV : Résultats et discussion.

Angles	B3LYP,°		Angles	B3LYP,°
C16-C14-C25	109,1518	r I	C24-C27-C31	120,669
C13-C15-C14	111,3813		C28-C27-C31	119,5773
C19-C20-H46	109,8283		C26-C28-C27	119,5167
С19-С20-Н47	107,6884		C26-C28-C32	121,4738
C21-C20-H46	110,5173		C27-C28-C32	119,0093
С21-С20-Н47	108,9406		С23-С29-Н52	110,4739
H43-C16-H44	107,6019		С23-С29-Н53	110,7134
C13-C17-C18	121,7838		C18-C16-H44	111,1388
C13-C17-C24	117,9573		С34-С36-Н62	118,9068
C18-C17-C24	120,2478		C38-C36-H62	121,8357
C16-C18-C17	121,6679		C35-C37-C38	120,4256
C16-C18-C26	118,9259		С35-С37-Н64	120,3003
17-C18-C26	119,4061		С38-С37-Н64	119,2739
O1-C19-O2	112,1949		C36-C38-C37	120,7964
O1-C19-C20	108,2328		С36-С38-Н65	120,063
O1-C19-H45	107,8511		С37-С38-Н65	119,1403
O2-C19-C20	112,7364		O11-C39-H66	111,5298
O2-C19-H45	104,7156		O11-C39-H67	105,4293
С20-С19-Н45	111,0029		О11-С39-Н68	111,3467
C19-C20-C21	112,0983		H66-C39-H67	109,4105
H53-C29-H54	109,283		H66-C39-H68	109,6848
O8-C30-C25	111,6213		Н67-С39-Н68	109,3312
O8-C30-H57	111,225		Н52-С29-Н54	108,0876
O8-C30-H58	110,9658		С23-С29-Н54	110,4137
С25-С30-Н57	108,2554		Н52-С29-Н53	107,7891
С25-С30-Н58	108,5925		O10-C32-C28	123,1882
H57-C30-H58	105,9659		O10-C32-C34	119,9535
O9-C31-C27	121,5429		C28-C32-C34	116,8228
O9-C31-C33	122,6654		C31-C33-C34	118,3164
C27-C31-C33	115,7116		C31-C33-C35	122,511
C33-C34-C36	121,1126		C34-C33-C35	119,053
011-C35-C33	117,3557		C32-C34-C33	121,043
C33-C35-C37	118,581		C32-C34-C36	117,833
		1		1

Les performances de la DFT /B3LYP dans la prédiction des paramètres géométriques de la molécule de la doxorubicine ont été jugées, selon les valeurs de coeffients de régressions linéaires dans les graphiques des dépendances valeurs valeurs prédites = f (valeurs expériementales).

Figure 14: Corrélation entre les valeurs de longueurs de liaison expérimentales et celles obtenues par prédiction théorique.

Figure 15: Corrélation entre les valeurs de angles de liaison expérimentales et celles obtenues par prédiction théorique.

On remarque que les valeurs des coefficients de corrélation sont égaux respectivement à 0.947 et 0.942. On peut conclure que les résultats de prédiction sont en bon accord avec ceux obtenus expérimentalement.

Les différences entre les deux valeurs peuvent être expliquées d'une part par la nature de la fonctionnel d'échange elle-même, et d'autre part par le fait que la prédiction théorique a été effectuée en phase gazeuse alors que les résultats expérimentaux ont été obtenus à partir du composé en phase solide.

IV.2 Structure géométrique de complexe (DOX-AA)

La géométrie du complexe DOX-AA optimisée par DFT/ B3LYP++G(d,p) est représentée sur la figure (16) suivante :

Figure 16 : Structure moléculaire optimisée du complexe DOX-AA par DFT/ B3LYP++G (d,p).

Les valeurs des longueurs de liaison et des angles sont présentées dans les tableaux cidessous. Suite à la formation du complexe, les longueurs des angles de liaison subissent des modifications plus ou moins importantes selon leurs positions dans la molécule du complexe.

Sur les tableaux 3, 4 on rapporte les différences entre les paramètres géométriques des réactifs libres et ceux du complexe formé.

liaisons(Å)	DOX-AA	DOX	Diff
O3-H51	0,967	0,966	-0,001
O7-H25	1,216	1,214	-0,002
O8-C30	1,395	1,4042	0,0092
O8-H63	0,9732	0,969	-0,0042
C14-C16	1,54	1,539	-0,001
C14-C25	1,538	1,533	-0,005
C19-CH45	1,095	1,094	-0,001
C25-C30	1,517	1,513	-0,004
С30-Н57	1,094	1,097	0,003
C30-H58	1,101	1,097	-0,004

Tableau 04: Différence des longueurs de liaisons (Å) (1), des angles (2), et les dihèd	lres
(3)enter la molecule de doxorubicine seul et le complexe (DOX-AA).	

Angles(°)	DOX-AA	DOX	Diff
С30-О8-Н63	109,088	106,814	-2,274
C35-O11-C39	119,324	119,345	0,021
O3-C14-C16	110,989	111,091	0,102
07-C25-C14	119,002	120,875	1,873
O7-C25-C30	122,7057	120,025	-2,680
C14-C25-C30	118,272	119,096	0,824
O8-C30-C25	114,026	111,621	-2,405
O8-C30-H57	108,655	111,225	2,57
O8-C30-H58	113,272	110,965	-2,307
С25-С30-Н57	107,944	108,255	0,311
С25-С30-Н58	107,223	108,592	1,369

Dihèdre(°)	DOX-AA	DOX	Diff.
H63-O8-C30-C25	64,171	-1,399	62,772
Н63-О8-С30-Н57	-175,394	119,626	295,02
H63-O8-C30-H58	-58,827	-122,675	63,848
C39-O11-C35-C33	179,666	-179,99	359,66
O1-C13-C15-C14	78,776	80,765	1,989
O1-C13-C15-H41	-162,035	-159,91	2,119
07-C25-C30-O8	-4,779	1,442	6,221
07-С25-С30-Н57	-125,61	-121,29	4,314
07-С25-С30-Н58	121,454	124,086	2,632
C14-C25-C30-O8	176,74	-177,74	354,48

Liaisons, Å	DOX-AA	AA	Diff
C70-C71	1,503	1,511	0,008
C71-C72	1,537	1,529	-0,008
C72-C74	1,527	1,521	-0,006
С72-Н83	1,093	1,097	0,004
С73-Н88	0,969	0,966	-0,003
C74-H85	1,092	1,097	0,005
C77-O78	1,211	1,204	-0,007
C77-C79	1,461	1,46	-0,001
C79-O80	1,341	1,35	0,009
O80-H87	0,979	0,968	-0,011

Tableau 05:	Différence des	longueurs de	e liaisons ,	des angles,	et les dihèdres	dans	la
	molécule d	le AA libre d	lans le con	nplexe DOX	-AA.		

Angles, (°)	DOX-AA	AA	Diff
C71-C72-O73	106,9978	104,9312	-2,0666
073-С72-Н83	107,2022	109,8747	2,6725
C72-C74-O75	110,199	105,3807	-4,8183
O75-C74-H84	106,4385	111,6802	5,2417
O75-C74-H85	112,0121	110,725	-1,2871
O76-C77-O78	120,9136	123,3007	2,3871
O78-C77-C79	129,6703	127,7107	-1,9596
C70-C79-C77	107,5474	108,6862	1,1388
C70-C79-O80	127,6621	129,8405	2,1784
C77-C79-O80	124,6397	121,4623	-3,1774
С79-О80-Н87	111,6549	107,298	-4,3569

Dihèdres (°)	DOX-AA	AA	Diff
C71-C70-C79-O80	-178,535	178,89	357,425
H82-C71-C72-H83	-178,321	178,272	356,593
С71-С72-О73-Н88	91,302	168,91	77,608
C71-C72-C74-O75	-71,501	-173,6	-102,099
С71-С72-С74-Н84	172,084	66,014	-106,07
С71-С72-С74-Н85	52,68	-54,327	-107,007
073-С72-С74-Н84	-67,583	-176,676	-109,093
073-С72-С74-Н85	173,012	62,981	-110,031
H83-C72-C74-O75	166,426	64,567	-101,859
H83-C72-C74-H85	-69,391	-176,159	-106,768
С72-С74-О75-Н86	96,932	174,968	78,036
H84-C74-O75-H86	-145,113	-65,927	79,186
H85-C74-O75-H86	-26,251	56,325	82,576
C71-O76-C77-O78	179,765	-178,587	-358,352
O78-C77-C79-C70	-177,747	-0,159	177,588
С70-С79-О80-Н87	-161,982	179,45	341,432
С77-С79-О80-Н87	23,046	0,8049	-22,2411

Selon les tableaux les liaisons les plus affectées sont : C30-C25, C25-O7, C30-O8 et O8-H53 pour la doxorubicine, et C77-O78, C77-C79, C79-O80, O80-H87, H71-O75, O75-H86, C71-H84 et C71-H85 dans la molécule de l'acide ascorbique.

IV.4 Analyse des charges de Mulliken

Un autre moyen préliminaire attestant la formation d'un complexe à partir de deux réactifs libres, est la comparaison des charges de Mulliken correspondantes des différents atomes. Le tableau 5 rassemble les résultats qui montrent les modifications des charges.

A 400000	DOV	DOX-AA,	D:ff		A 4 0 mm 0		DOX-AA,	Diff
Atome	DOA, u.a	u.a	DIII		Atome	AA, u.a	u.a	DIII
01	0,3551	0,0861	-0,2689	ľ	O69	-0.2559	-0.2033	0,0526
03	-0,0530	-0,0278	0,0251		C70	-0.2384	-0.5320	-0,2936
07	-0,1654	-0,1229	0,0424		C71	-0.1108	0.1783	0,2892
O10	-0,1739	-0,2049	-0,0310		C72	0.0141	-0.0646	-0,0787
C13	-0,7887	-0,4426	0,3460		073	-0.2752	-0.2536	0,0216
C14	-0,2738	-0,3920	-0,1181		C74	-0.4105	-0.4352	-0,0247
C15	-1,2429	-0,7147	0,5282		075	-0.3293	-0.2291	0,1002
C17	0,7358	0,3823	-0,3535		O76	-0.0952	-0.0961	0,1913
C21	-0,3499	-0,4523	-0,1024		C77	0.0774	-0.1776	-0,255
C22	-0,4012	-0,2986	0,1026		O78	-0.3151	-0.3253	-0,010
C24	-0,4210	-0,7047	-0,2836		C79	0.2820	0.3078	0,0258
C25	0,2631	0,4160	0,1528		O80	-0.3278	-0.2867	0,0411
C26	-0,1757	-0,3385	-0,1628		H81	0.3212	0.3148	-0,0063
C27	0,2813	0,9831	0,7018		H82	0.2462	0.2890	0,0428
C28	0,1413	0,8197	0,6783		H83	0.1998	0.2035	0,0037
C30	-0,3259	-0,6456	-0,3197		H84	0.2901	0.1552	-0,1349
C31	-0,4713	-1,1728	-0,7014		H85	0.1592	0.1821	0,0228
C32	-0,6717	-0,8033	-0,1315		H86	0.1945	0.2832	0,0886
C33	0,488	0,1084	-0,380		H87	0.2720	0.4389	0,1669
C34	0,4100	0,6066	0,1965		H88	0.3018	0.2903	-0,0114
C36	-0,0264	0,1046	0,131					
C37	0,0066	-0,1562	-0,1629		<u> </u>			
C38	-0,3199	-0,4278	-0,1078					
H48	0,2261	0,2409	0,0147					
H50	0,2325	0,1395	-0,092					
H58	0,1676	0,2724	0,1048					
H63	0,2651	0,3067	0,0415					

Tableau 06 : Résultats de calcul des charges de Mulliken du complexe DOX-AA.

On note que les atomes O7 et O78 portant des charges négatives (-0,1229 et -0.3253 u.a), et les hydrogènes H63, H87 portons des charges positives (0,3067 et 0.4389 u.a) confirment l'existence des liaisons ioniques entre (O7-H87), (H63-O78) entre la doxorubicine et l'acide ascorbique (Tableau 5).

D'après le tableau l'atome de carbone C27 est l'atome le plus positif (0,9831 u.a) cet atome est privilégié pour subir une attaque nucléophile, et le carbone C31 est l'atome le plus négatif (-1,1728 u.a) dans le complexe donc cet atome est privilégié pour subir une attaque électrophile.

D'autre part, les charges des atomes C36 et C37 sont égales à -0,0264 et 0,0066 u.a suite à la complexation elles deviennent 0,1046 et -0,1562 u.a respectivement.

D'après le tableau on peut conclure que dans le complexe la densité électronique est concentrée sur les atomes suivants :

- 07, 08, 010, C13, C14, C15, C22, C24, C26, C30, C32, C37, C38 sur doxorubicine.
- 069, C70, C72, C73, C74, O75, C77, O78, O80 sur l'acide ascorbique.

IV.5 Potentiel électrostatique moléculaire (MEP)

Il fournit une méthode visuelle pour comprendre la polarité relative de la molécule. Le potentiel électrostatique négatif correspond à une attraction du proton par la densité des électrons dans la molécule. Le potentiel électrostatique positif correspond à la répulsion du proton par les noyaux atomiques dans les régions où la densité électronique est faible. Les différentes valeurs du potentiel électrostatique sont représentées par différentes couleurs, le rouge représente les régions du potentiel électrostatique négatif, le bleu représente les régions du potentiel électrostatique négatif, le bleu représente les régions du potentiel électrostatique négatif du potentiel zéro.

Figure17 : Iso surface de potentiel électrostatique moléculaire de complexe (DOX-AA).

Le complexe présente deux régions électronégatives rouges sur les deux atomes oxygène O9 O10 de la quinone de DOX qui sont susceptibles aux attaques électrophiles et deux régions électropositives bleues, une sur l'alcool primaire de l'acide ascorbique et l'autre sur OH de la daunosamine que sont susceptibles aux attaques nucléophiles. Le reste de la molécule exerce une activité électrostatique presque neutre et donc inactif (Figure 17). La valeur maximale de la région positive qui est localisée sur la liaison de l'atome H de l'acide ascorbique à une valeur de 0,175 u.a, et la valeur maximale de la région négative est de -0,10 u.a. D'après ces résultats, on peut déduire que les atomes de H indiquent l'attraction la plus forte et l'atome de O indique la répulsion la plus forte.

La zone où les deux molécules sont attachées présentes une couleur orange qui peut être liée aux atomes d'oxygène des deux molécules.

IV.6 Analyses des orbitales moléculaires frontières :

Les valeurs énergétiques des orbitales frontières hautes occupées (HOMO) et basses vacantes (LUMO) ainsi que le gap énergétique ΔE =HOMO-LUMO de la doxorubicine, l'acide ascorbique et le complexe sont regroupées dans le tableau ci-après :

	E _{HOMO} , eV	E _{LUMO} (eV)	ΔE, eV
AA	-6,5201	-1,1404	5,3796
DOX	-6,3277	-2,7137	3,6139
Complexe A	-6,2708	-2,6454	3,6253
Complexe B	-6,1598	-3,0721	3,0876
Complexe C	-6,2425	-3,1339	3,1086
Complexe D	-6,1745	-3,0735	3,1010

Tableau 07: Energies des orbitales frontières HOMO-LUMO.

La différence énergétique entre HOMO et LUMO décrit bien la réactivité chimique des molécules. Les écarts d'énergie des orbitales frontières pour les quatre complexes A, B, C, D sont de 3.6253, 3.0876, 3.1086 et 3.1010 eV, respectivement. L'écart d'énergie de complexe A est 3.6253eV et est le plus élevé par rapport au autres complexes. Ce qui rend le complexe le plus dur et le moins réactif. L'augmentation de cet écart peut indiquer que le complexe A est relativement plus stable et moins polarisable que la doxorubicine et les complexes B, C, et D. Les gaps des complexes suivent alors l'ordre décroissant suivant : complexe A > DOX > complexe C > complexe D > complexe B.

La molécule présentant un petit gap est généralement associée à une réactivité chimique élevée et une stabilité cinétique faible. De ce point de vue, le complexe B et le plus réactif ce qui rend le plus mou de cette série des complexes.

$\Delta E(DOX/AA)_eV$	$\Delta E(AA/DOX)$, eV
5,1873	3,8063

Tableau 08: Différences d'énergie entre les deux combinaisons possibles

HOMO/LUMO.

L'examen du tableau nous permet de constater que l'écart d'énergie est 5.1873 eV correspond au gap d'énergie de HOMO(DOX)/LUMO(AA) et est supérieur à celui qui correspond au gap HOMO(AA)/LUMO(DOX) 3.8063eV ce qui montre que l'acide ascorbique se comporte comme donneur et la doxorubicine comme accepteur d'électrons.

Les molécules conjuguées sont caractérisées par un petit (HOMO – LUMO) gap, qui est le résultat d'un transfert de charge intramoléculaire important des groupes de donneurs d'électrons vers les groupes accepteurs d'électrons par chemin conjugué. Le fort transfert de charge résulte en mélange fondamental donneur-accepteur en conséquence, un transfert de densité électronique se produit à partir de la partie la plus aromatique du système conjugué du côté donneur d'électrons l'hydroquinone à sa partie électroattractrice principalement de l'anthracène.

De plus, l'iso-densité HOMO et LUMO de complexe A montré un certain chevauchement des deux orbitales dans la région médiane de système conjugué (tableau 8), qui est une condition préalable pour permettre une transition efficace de transfert de charge. Les figures ci-après représentent les schémas des orbitales moléculaires frontières HOMO et LUMO de l'acide ascorbique du doxorubicine et le complexe A.

Tableau09 : Les Schémas des orbitales moléculaires frontières de l'acide ascorbique 1), ladoxorubicine2) et du complexe DOX-AA 3).

Composés	НОМО	LUMO
1)		

Dans les topologies des orbitales moléculaires, les lobes rouges sont positives et les lobes vertes sont négatives. Les graphes 3D permettent de constater que les niveaux d'HOMO à -6,2708eV sont situés sur l'hydroquinone tandis que le LUMO avec l'énergie de -2,5910eV est réparti principalement sur l'anthracène du complexe.

IV.7 Les indices de réactivité globaux

L'étude de la réactivité globale des molécules est basée sur le calcul des indices globaux déduits des propriétés électroniques à partir de la théorie fonctionnelle de densité conceptuelle. Ils sont déduits des valeurs de l'énergie des orbitales moléculaires frontières telles que : potentiel chimique (μ), électronégativité (χ), dureté globale (η), mollesse globale (S) et l'indice d'électrophilicité (ω). Les tableaux ci-après récapitulent les valeurs de ses grandeurs pour l'acide ascorbique, la doxorubicine et les complexes correspondants.

Tableau 10 : Les valeurs des indices globaux de la réactivité de l'acide ascorbique, la

Composés	$\Delta E, eV$	Ι	А	μ	χ
AA	5,3796	6,52012	1,1404	-3,8302	3,8302
DOX	3,6139	6,32773	2,7137	-4,5207	4,5207
Complexe A	3,6253	6,27086	2,6454	-4,4581	4,4581
Complexe B	3,0876	6,15984	3,0721	-4,6160	4,6160
Complexe C	3,1086	6,24256	3,1339	-4,6882	4,6882
Complexe D	3,1010	6,17453	3,0735	-4,6240	4,6240

doxorubicine et des complexes.

Composés	η	S	ω	ΔN_{max}
AA	2,6898	1,3449	2,7271	1,4239
DOX	1,8069	0,9034	5,6551	2,5018
Complexe A	1,8126	0,9063	5,4822	2,4594
Complexe B	1,5438	0,7719	6,9008	2,9899
Complexe C	1,5543	0,7771	7,0705	3,0162
Complexe D	1,5505	0,7752	6,8950	2,9822

Selon ces résultats, il en ressort que le potentiel chimique électronique de l'acide ascorbique (-3.8302 eV), se trouve au niveau d'énergie supérieur à celui de la doxorubicine (-4.5207 eV), ce qui implique que le transfert d'électrons a lieu de l'acide ascorbique vers la doxorubicine. Pour les complexes, le complexe A présente la valeur le plus élevée et le complexe C la plus base.

Les valeurs des électronégativités confirment ces résultats attendus que la différence d'électronégativité entre les deux molécules est grande, plus le nuage électronique qui relie les deux molécules est déformé, plus la liaison est polarisée. Après l'addition de l'acide ascorbique l'électronégativité augmente pour les complexes B, D, C respectivement et diminue pour le complexe A cela signifie que la tendance pour la molécule à attirer des électrons diminue pour le complexe A, on peut dire que lorsqu'une molécule est confinée, elle commence à perdre de sa capacité à attirer les électrons.

Pour caractériser la réaction étudiée, on peut dire qu'il s'agit d'une réaction de type dur – mou. L'acide ascorbique est plus dur ($\eta = 2,6898 \text{ eV}$) et le doxorubicine est le composé mou. La dureté de la doxorubicine ($\eta = 1,8069 \text{ eV}$), est inférieure à celle de l'acide ascorbique, ce qui signifie que la doxorubicine conserve peu ces électrons dans son environnement, contrairement à l'acide ascorbique, et en conséquence le complexe A possède une dureté de ($\eta=1,8126 \text{ eV}$) qui est la plus élevée comparativement aux autres complexes. La dureté chimique est associée à la stabilité et réactivité d'un système chimique. Dans les complexes, elle mesure la résistance au changement de la distribution des électrons ou de transfert de charge. La dureté de la doxorubicine augmente après l'ajout de l'acide ascorbique, la molécule a évoluée d'une forme instable vers une forme équilibrée. Les complexes prennent l'ordre décroissant de dureté suivant : A>B>C>D.

La mollesse globale de la doxorubicine ne modifié que d'une faible valeur en présence de l'acide ascorbique dans le complexe S(A)=0,9063 eV, et diminue pour les trois complexes

S (B)=0,7719, S (C)=0,7771, S (D)=0,7752 eV, dont la mollesse le plus élevée est celle de la DOX seul S= 0,9034 eV.

La doxorubicine possède une grande valeur d'électrophilicité $\omega = 5.6551$ eV, ce qui la rend un électrophile alors que l'acide ascorbique $\omega = 2.7271$ eV est un nucléophile cela indique que la réaction entre les deux molécules est très favorisée. Par conséquent, plus la valeur de l'indice d'électrophilicité est élevée mieux est le caractère électrophile et plus la molécule est réactive. On note que le caractère électrophile de la doxorubicine pour accepter un électron et le transformer en dérivé semi quinone diminue lors de l'ajout de là l'acide ascorbique parce que la valeur de l'index électrophile diminue pour le complexe A ω =5,4822eV, et augmente de manière significative pour le complexe C ω =7.0705 eV. L'ordre de l'électrophilicité observé est suivant : C > B >D >A.

Le transfert de charge maximale de la doxorubicine est $\Delta N_{max} = 2,5018$ eV et de l'acide ascorbique $\Delta N_{max} = 1,4239$ eV et l'écart entre les deux est $\Delta N_{max} = 1.0779$ eV, ce qui indique un fort caractère polaire dans cette condensation. Le nombre maximum d'électrons qu'un électrophile peut acquérir est donné par l'indice ΔN_{max} , ce caractère augment dans les complexes C, B, D et diminue pour le complexe A.

Conclusion

Les paramètres géométriques de la doxorubicine optimisée par DFT/B3LYP++G (d,p) ont été comparés aux données cristallographiques. Les résultats de prédiction sont en bon accord avec ceux obtenus expérimentalement.

Les structures des complexes de la doxorubicine avec l'acide ascorbique ont été prédites théoriquement. Les indices de réactivité globeux pour chaque configuration ont été déterminés selon les valeurs du gap, potentiel chimique, électronégativité, dureté et indice d'électrophilicité. La réactivité de DOX augment par réaction avec l'acide ascorbique dans les complexes B, C, D et diminue dans le complexe A en conséquence, ce complexe possédé la configuration la plus possible que l'explique l'influence de l'acide ascorbique sur la doxorubicine.

Résumé:

La doxorubicine (DOX), est un agent thérapeutique anticancéreux puissant, son utilité clinique est limitée en raison de sa cardiotoxicité. Des mécanismes ont été proposés pour les effets cardiotoxiques de la DOX, ainsi que les déficits en antioxydants et le stress oxydant ont été suggérés pour jouer un rôle majeur dans la cardiomyopathie induite par le DOX. Au cours de ces dernières années, on a constaté un intérêt croissant pour l'utilisation d'antioxydants naturels en tant que stratégie de protection contre les maladies cardiovasculaires. L'acide ascorbique est un antioxydant puissant hydrosoluble qui élimine les espèces réactives d'oxygène et d'azote et protège les cellules contre les dommages oxydatifs. Dans cette recherche, nous étudions la réactivité chimique de la vitamine C en complexe avec DOX .Le complexe a été étudié en utilisant B3LYP fonctionnel en DFT méthode aux 6-311 ++ propriétés moléculaires de l'ensemble de base G (d, p) telles que potentiel d'ionisation (I), affinité électronique (A), dureté chimique (η), souplesse chimique (S), électronégativité (χ), chimique les paramètres de potentiel (μ) et d'indice d'électrophilicité () ont été déterminés via les énergies HOMO et LUMO du complexe pour prédire l'effet de l'acide ascorbique sur la réactivité chimique de doxorubicine.

Mots clés: doxorubicine, cardiotoxicité, stress oxydant, ROS oxygène réactif, acide ascorbique, réactivité chimique, méthode DFT, descripteurs de réactivité.

Abstract:

Doxorubicin (DOX), an anthracycline, widely used as antineoplastic agent and shows a broad range of antitumor activity, including acute leukemia, malignant lymphomas, breast cancer. Despite of doxorubicin being potent anticancer therapeutic agent, its clinical usefulness is limited due its cardiotoxicity. A number of mechanisms have been proposed for cardiotoxic effects of DOX, including oxidative stress from free radical-induced myocardial injury, mitochondrial damage, iron-dependent oxidative damage to macromolecules DNA, accumulation of toxic metabolic in the cardiac tissues. Moreover, increased oxidative stress and release of reactive oxygen radicals ROS, as well as antioxidant deficits, have been suggested to play a major role in dox-induced cardiomyopathy. In recent years, there have been growing interests in uses of natural antioxidants as a protective strategy against the cardiovascular. Ascorbic acid is a potent water-soluble antioxidant that scavenges reactive oxygen and nitrogen species and protects cells from oxidative damage. In the present work we aim to study the chemical reactivity of vitamin C in complex with DOX. The complex was studied using DFT at B3LYP level with 6-311++G(d,p) basis set. Molecular properties such as ionization potential (I), electron affinity (A), chemical hardness (n), chemical softness (S), electronegativity (χ), chemical potential (μ) and electrophilicity index (ω) parameters were determined via HOMO and LUMO energies of the complex.

Key words: doxorubicin, cardiotoxicity, oxidative stress, reactive oxygen ROS, ascorbic acid, chemical reactivity, DFT method, reactivity descriptors.

ملخص:

, Doxorubicine دواء مضاد للسرطان يستخدم في العلاج الكيميائي لأنواع عديدة من الأورام السرطانية و مع ذلك فأن استعماله مزال محدود بسبب سميته القلبية الناتجة عن النتاج المفرط للجدور الحرة ونقص الانظمة المضادة للأكسدة والتي تلعب دورا رئيسيا في اعتلال عضلة القلب تسعى الدراسات الحديثة لاستعمال مضادات الأكسدة كاستراتيجية وقائية ضد السمية القلبية. حمض الأسكوربيك هو أحد مضادات الأكسدة القوية القابلة للذوبان في الماء والذي يحمي الخلايا من التلف السمية القلب تسعى الدراسات الحديثة لاستعمال مضادات الأكسدة كاستراتيجية وقائية ضد السمية القلبية. حمض الأسكوربيك هو أحد مضادات الأكسدة القوية القابلة للذوبان في الماء والذي يحمي الخلايا من التلف السمية القلبية. حمض الأسكوربيك على فعالية تلذوبان في الماء والذي يحمي الخلايا من التلف ودراستها عن طريق النمذجة الدراسة لتقصي تأثير حمض الاسكوربيك على فعالية XOO حيث تم تجهيز 4 مركبات ودراستها عن طريق النمذجة الجزيئية باستخدام HOAPB3LYP السكوربيك على فعالية الذوبان في الماء والذي يحمي الخلايا من التلف ودراستها عن طريق النمذجة الجزيئية باستخدام HOAPB3LYP المكوربيك على فعالية الذوبان في ماء والذي يحمي الخلايا من التلف ودراستها عن طريق النمذجة الجزيئية باستخدام HOAPB3LYP المكوربيك على فعالية الذوبان في الماء والذي يدم مركبات مثل احتمال التأين (I) ، تقارب الإلكترون (A) ، صلابة الكيميائية (n) ، ليونة الكيميائية (S) ، كهروسلبية (χ)، (μ)كمون مثل احتمال التأين (I) ، تقارب الإلكترون (A) ، صلابة الكيميائية (n) ، ليونة الكيميائية (S) ، كهروسلبية (سالمكوربيك لل كمور الكاكترون (A) ، صلابة الكيميائية (n) ، ليونة الكيميائية (S) ، كهروسلبية الكيميائية (n) مثل احتمال التأين (I) ، تقارب الإلكترون (A) ، صلابة الكيميائية (n) ، ليونة الكيميائية (S) ، كهروسلبية (I) معر طاقات من طاقات من من الوليم في المركب A ومؤسل المركب المركب الماد مل الماد الن اضافة كيميائي ومؤشر الكهربية (M) معر طاقات من ثباته وانقصت من فعاليته في المركب A .

الكلمات المفتاحية:

الدوكسوروبيسين ، السمية القلبية ، الإجهاد التأكسدي ، الأكسجين التفاعلي ROS ، حمض الأسكوربيك ، الفاعلية الكيميائية.

Bibliographie :

[1]Torres, V. M., Simic, V. D. (2012). Doxorubicin-induced oxidative injury of cardiomyocytes-do we have right strategies for prevention?. *Cardiotoxicity of oncologic treatments*. IntechOpen. (1-15 p).

[2]Favier A. (2003). Le stress oxydant. Mécanismes biochimiques,(1-6 p).

[3]Mazevet M H. (2015). Etude de la cardiotoxicité induite par les traitements anticancéreux : Rôle d'Epac dans la cardiotoxicité induite par la Doxorubicine. Thèse De Doctorat. L'université Paris-Saclay.

[4]Chavalle T. (2017). Contribution à l'étude de la pharmacocinétique et de la tolérance de la doxorubicine chez le chien. Thèse Doctorat. Université CLAUDE-BERNARD - LYON I.

[5]Ihoual ép F.Safia. (**2018**). Effet d'extrait méthanolique de la plante médicinale *Phlomis Samia* (الخياطة) sur l'apoptose des cellules cancéreuses HepG2 et MDA MB 468 et sur la cardiotoxicité induite par la Doxorubicine. Thèse doctorat. Constantine: Université des Frères Mentouri,(209 p).

[6]Kara A Wahiba. (2018). Effet des extraits de la plante médicinale *Ruta montana* (الفيجل) sur la cardiotoxicité induite par la doxorubicine et sur la multi-drug résistances (MDR) des cellules cancéreuses ovarien (A2780). Thèse De Doctorat. Constantine: Université des Frères Mentouri, (184 p).

[7]Jabłońska-Trypuć, A., Świderski, G., Krętowski, R., Lewandowski, W. (2017). Newly synthesized doxorubicin complexes with selected metals-Synthesis, structure and anti-breast cancer activity. *Molecules*, 22(7), 1106.

[8]Carole. M. (2017).Prise en charge des effets indésirables de la chimiothérapie anticancéreux à l'office par homéopathie aromathérapie et phytothérapie. Thèse doctorat en pharmacie. Université de Touleux III Paul Sabastier.

[9]Bouaouina, D., Boulhabel, H, R., Bousba, E. (2017). L'effet préventif de la plante médicinale Algérienne *Salvia Officinalis* contre la toxicité cardiaque induite par la Doxorubicine. Mémoire de Master. Constantine : Université des Frères Mentouri, (101 p).

[10]Guenancia. C. (2015). Implications du stress oxydant et du fer dans la cardiotoxicité des anthracyclines et du trastuzumab. Thèse Doctorat. Université De Bourgogne-Franche-Comte.
[11]Bouguene B. (2012). Conception et synthèse de dérives phénoliques biologiques vis a-vis des maladies cardiovasculaires (athérosclérose). L'Université Toulouse III - Paul Sabatier.
[12] Migdal C, Serres M. (2011). Espèces réactives de l'oxygène et stress oxydant.

[13] Hininger-Favier, I. Le Stress oxydant. Maître des Conférences des Universités, (1-6p).

[14]Belkheiri N. (2010).Dérives phénoliques à activités antiathérogènes. Université Toulouse III -Paul Sabatier, (7-p).

[15]Das, T. K., Wati, M. R., & Fatima-Shad, K. (2015). Oxidative stress gated by Fenton and Haber Weiss reactions and its association with Alzheimer's disease. *Archives of Neuroscience*, 2(2).

[16]Donatiello, C. (2002).La toxicité cardiaque des anthracyclines dans le traitement des tumeurs de l'enfant. Thèse de doctorat. Université de Genève, (38 p).

[17]Gudjoncik, A., Guenancia, C., Zeller, M., Cottin, Y., Vergely, C., Rochette, L. (2014). Iron, oxidative stress, and redox signaling in the cardiovascular system. *Molecular nutrition & food research*, *58*(8), 1721-1738.

[18]Sekli-Belaidi, F. (2011). Fonctionnalisation de surfaces d'électrodes par un film de poly(3,4-éthylènedioxythiophène) PEDOT pour l'élaboration de micro capteur spécifique des acides ascorbique et urique : application à l'étude des propriétés antioxydantes du sérum sanguin. Thèse doctorat. L'Université Toulouse III - Paul Sabatier, (6-10p).

[19]Schwartz, E. (2016). La Vitamine C. Dess de cosmetologie, (7-15p).

[20]Pires, A. S., Marques, C. R., Encarnação, J. C., Abrantes, A. M., Mamede, A. C., Laranjo, M., Botelho, M. F. (2016). Ascorbic acid and colon cancer: an oxidative stimulus to cell death depending on cell profile. *European journal of cell biology*, 95(6-7), 208-218.

[21]Pehlivan.F.E. (2017). Vitamin C: An Antioxidant Agent. Intech open,(24-31p).

[22]Kim, D. O., Lee, C. Y. (2004). Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. *Critical reviews in food science and nutrition*, 44(4), 253-273.

[23]Djouadi.L, Chekroune.S. (2013). Etude de l'effet de la température de conservation sur l'évolution de quelques substances bioactives et de l'activité antioxydant d'une boisson au lait, (3-5p).

[24]Hacisevki, A. (2009). An overview of ascorbic acid biochemistry. *Ankara Üniversitesi Eczacılık Fakültesi Dergisi*, *38*(3), 233-255. 866.

[25]Pullar, J., Carr, A., & Vissers, M. (2017). The roles of vitamin C in skin health. *Nutrients*, *9*(8), 866.

[26]Chegaev, K., Riganti, C., Rolando, B., Lazzarato, L., Gazzano, E., Guglielmo, S. Gasco, A. (2013). Doxorubicin-antioxidant co-drugs. *Bioorganic & medicinal chemistry letters*, 23(19), 5307-5310.

[27]Swamy, A. V., Wangikar, U., Koti, B. C., Thippeswamy, A. H. M., Ronad, P. M., & Manjula, D. V. (2011). Cardioprotective effect of ascorbic acid on doxorubicin-induced myocardial toxicity in rats. *Indian journal of pharmacology*, *43*(5), 507.

[28]Bendjeddou, A., Abbaz, T., Gouasmia, A. K., Villemin, D. (2016). Molecular structure, HOMO-LUMO, MEP and Fukui function analysis of some TTF-donor substituted

molecules using DFT (B3LYP) calculations. International Research Journal of Pure and Applied Chemistry, 1-9.

[29]Morell, C. (2006). Un nouvelle descripteur de réactivité étude théorique et application à la sélectivité de quelle que réaction chimique, (34-60p).

[**30**]**Mahi, M.Awatif. (2011).** Etude théorique de la regioselectivite dans les réactions de diels-alder intramoléculaires, (14-60p).

[31]Nguyen, trong anh. (1995). Orbitale frontières.

[**32**]**Tahraoui, L. (2009).** Etude de la structure électronique des composés bimétalliques à ligands riches en électrons, (7-9p).

[33]Bouacha, S. (2014). Etude théorique et expérimentale des réactions de cycloaddition Diels&Alder et 1,3- dipolaire, (40-45p).

[34]Pearson, R. G. (1963). Hard and soft acids and bases. *Journal of the American Chemical society*, 85(22), 3533-3539.

[35]Kolandaivel, P., Praveena, G., Selvarengan, P. (2005). Study of atomic and condensed atomic indices for reactive sites of molecules. *Journal of Chemical Sciences*, *117*(5), 591-598.

[36]Luis R. Domingo., Mar Ríos-Gutiérrez., Patricia Pérez. (2016). Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry ReactivityMolecules 21.6.

[**37**]**Medjdoub née Ghomri.A**. (**2012**). Contribution à l'étude de la réactivité chimique à l'aide de la DFT conceptuelle. Applications à la chimie hétérocyclique, (39-79p).

[**38**]**Merouani.H**. (**2008**). Contribution aux études théorique et Cinétique de la réactivité de Nitrobenzofurazanes vis-à-vis des Phénols para substitues, (67-82p).

[**39**]**FICHERA, O. (2015).** L'électronégativité, un concept scientifique en perpétuelle évolution. Chimie nouvelle N° 120.

[40]Labet, V. (2009). Etude Théorique de Quelques Aspects de la Réactivité des Bases de l'ADN, (96-124p).

[41]Mathivathanan, L., Yang, G., Leng, F., Raptis, R. G. (2018). Crystal structure and conformational analysis of doxorubicin nitrate. *Acta Crystallographica Section E: Crystallographic Communications*, 74(3), 400-405.