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Notations

The following notations allow the reader to clearly understand the content of this manuscript.

• α, β, λ, µ are scalars and x, y, u, v, w, u′, v′, w′ are vectors.

• ⊕ This is an internal composition law.

• ⊗ This is an external composition law.

• E a vector space over K.

• Kn The field of n-tuples of real or complex numbers.

• (x1, x2, ..., xn) An element of Kn (vector).

• Kn [x] The vector space of all polynomial of degree not exceeding n with real or
complex coefficients.

• C ([a, b] ,R) The vector space of all continuous functions on [a, b] .

• C∞ ([a, b] ,R) The v. space of all infinitely differentiable functions on [a, b] .

• Mn (K) The vector space of all n by n real (or complex) matrices.

• Sn (K) The vector space of all n by n real (or complex) symmetric matrices.

• An (K) The vector space of all n by n real (or complex) skew-symmetric matrices.

• GLn (K) The vector space of all n by n invertible matrices.

• Mf (B) The matrix of the mapping f with respect to the basis B.

• P The passage matrix.

• {e1, e2, ..., en} In general denotes for the canonical basis.

• V ect {u1, u2, ..., un} The vector space of all linear combinations of the vectors ui (1 ≤
1 ≤ n).
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• ker f The kernel of the linear mapping f or the kernel of the bilinear symmetric form
f .

• Im f The vector subspace {f (v) : v ∈ E} .

• F ⊕G Direct sum between F and G.

• L2 (E) The v. space1 of all bilinear forms on E.

• L (E,F ) The v. space of all linear mappings from E to F .

• L (E,K) The v. space of all linear mappings from E to K.

• q or Q Quadratic forms.

• C The isotropic cone; C = {v ∈ E : f (v, v) = 0}.

• E∗ dual v. space of a vector space E.

• Φ∗ The dual mapping of Φ.

• S2 (E) The v. subspace of all symmetric bilinear forms on E.

• A2 (E) The v. subspace of all skew-symmetric bilinear forms on E.

• Q2 (E) The set of all quadratic forms on E.

• diag {a1, a2, ..., an} Diagonal matrix whose diagonal entries are a1, a2, ..., an.

• tr (A) The trace of an n by n matrix A.

• Sp (A) The spectral set of A = The set of eigenvalues of A.

• z The conjugate of the vector z ∈ Cn.

• i The imaginary pure number (i2 = −1).

• I The identity matrix.

• Re (z) The real part of a complex number z.

• At The transpose of a matrix A.

• det (A) Determinant of a square matrix A.

• A∗ The transpose conjugate of a complex n by n matrix A.

1v. space means vector space.
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• ‖v‖ the norm of the vector v.

• 〈u, v〉 The scalar product (or inner product) between the vectors u and v.
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General Introduction

T
his work is the fruit of teaching of this subject at the University of 8 Mai 45
Guelma. It is intended for students of the 2nd year mathematics. This volume
is devoted to a part of the program of Algebra 4 (bilinear forms, quadratic

forms, sesquilinear forms and hermitian forms. One can see [1], [2], [3], [4], [5], [6]).
Each chapter begins with a clear presentation of definitions, lemmas and theorems,

illustrated with numerous examples. This is followed by a graduated number of a set of
solved exercises.

The course summary is sufficiently developed so that everyone will find the results
they need to solve proposed problems. Although the large number of additional prob-
lems makes their solution difficult, special importance should nevertheless be given to
those presented in the first two chapters. After engaging in it, the student will feel more
confident.

I had been teaching this material by French from 2012 to 2016. Then I have taught it to
students a second time, but by English, starting 2020 to now. Being the first subject pre-
sented to students at the beginning of their education, they gladly accepted presenting it
in English language. Indeed, this course, which is based on bilinear forms (linearity from
the right and those from the left), is a continuation study of Algebra II taught in the first
year M.I. It is composed of five chapters. In Chapter 1, we recall some definitions and give
without proof some classical results on vector spaces and linear mappings, that is, we list
in the this chapter the basic notions on a vector space and its dual space. In chapter 2 we
deal with bilinear forms over a real vector space. It is not possible to understand such
properties without examining the related concepts of linear forms. More precisely, this
chapter describes the most properties of bilinear forms on a vector space and gives exam-
ples of the three most common types of such forms as well as symmetric, skew-symmetric
and alternating bilinear forms. Chapter 3 deals with the spectral decomposition of self-
adjoint linear mappings. The important condition of nondegeneracy for a bilinear form,
Gauss decomposition theorem and the orthogonal basis for a symmetric bilinear form are
the subject of Chapter 4. An introduction to Hermitian space is given in Chapter 5. At the
end of this lecture-note, the reader will find a conclusion and a bibliography.
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CHAPTER 1

LINEAR FORMS, DUALITY (VECTOR

SPACE AND ITS DUAL SPACE

As a continuation of Algebra 2, we present in this chapter many relationships be-
tween scalars, vectors and linear mappings having many variables defined on a

finite-dimensional v. space. Recall that the v. space is a basic object in the study of linear
algebra. It is a set of several vectors which are objects that can be added together and
multiplied by numbers, which are called scalars in this context. This chapter deals with
mappings defined on some special v. spaces that display one or two variables.

1.1 Vector space (a summary of lessons)

Let K = R or C and let E be a non-empty set equipped with two operations ⊕ and ⊗,
where

1. ⊕ is an internal composition law; i.e., ∀ u, v ∈ E : u⊕ v ∈ E.

2. ⊗ is an external composition law; i.e., ∀ λ ∈ K,∀ v ∈ E : λ⊗ v ∈ E.

We say that (E,⊕,⊗) is a v. space on the field K if the following conditions hold:

1. (E,⊕) is a commutative (Abelian) group.

2. ∀ λ ∈ K, ∀ u, v ∈ E : λ⊗ (u⊕ v) = (λ⊗ u)⊕ (λ⊗ v) ,

3. ∀ λ, µ ∈ K,∀ v ∈ E : (λ+ µ)⊗ v = (λ⊗ v)⊕ (µ⊗ v) ,

4. ∀ λ, µ ∈ K,∀ v ∈ E : λ⊗ (µ⊗ v) = (λ.µ)⊗ v,

5. ∀ v ∈ E : 1K ⊗ v = v. (if K = R or C⇒ 1K = 1).

To make statements (things) easier; in a v. space (E,⊕,⊗) over K, the internal law ⊕
we designate it + and the external law ⊗ we designate it · or nothing. The definition of a
v. space becomes:

We say that (E,+, .) is a vector space (or just v.s.) over the field K if:

2



1.1. VECTOR SPACE (A SUMMARY OF LESSONS) 3

i. + is an internal composition law on E; i.e., ∀ u, v ∈ E : u+ v ∈ E.

ii. · is an external composition law on E; i.e., ∀ λ ∈ K, ∀ v ∈ E : λv ∈ E.

1. (E,+) is a commutative (abelian) group.

2. ∀ λ ∈ K, ∀ u, v ∈ E : λ (u+ v) = λu+ λv,

3. ∀ λ, µ ∈ K,∀ v ∈ E : (λ+ µ) v = λv + µv,

4. ∀ λ, µ ∈ K,∀ v ∈ E : λ (µv) = (λµ) v,

5. ∀ v ∈ E : 1Kv = v.

We must know the following facts:

• The elements of the vector space E are called vectors and the elements of the field K
are called scalars (⇒ the sum of two vectors is a vector and the multiplication of a
vector by a scalar is a vector).

• The neutral element with respect to + in the vector space E we designate it 0E ; and
we call it the zero vector.

• In the v. space E over K; we have ∀ v ∈ E : −v = (−1) v; where −v is the symmetric
element of v with respect to +, and (−1) v is the multiplication of the vector v by the
scalar −1.

• For two vectors u and v of the vector space E, we write by convention u− v instead
of u+ (−v) and u+ (−1) v :

Let (E,+, .) a vector space over the field K and let F be a subset of E.

Definition 1.1. We say that F is a vector subspace (or subspave) of E if (F,+, .) is a vector
space over K, where 0F = 0E.

Remark 1.1. From the above definition we deduce that every vector space is a vector
subspace of itself.

Let E be a v. space, and let F and G be two subspaces of E.

• We haveF∩G = {v ∈ E / v ∈ F and v ∈ G} andF+G = {u+ v ∈ E / u ∈ F and v ∈ G}
are vector subspaces of E.

• Note that F +G = G+ F, F + F = F, F ∩G ⊂ F ⊂ F +G and F ∩G ⊂ G ⊂ F +G.

• Note that if v ∈ F +G, then ∃ a ∈ F, ∃ b ∈ G : v = a+b; where a and b are not unique.

c©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



1.1. VECTOR SPACE (A SUMMARY OF LESSONS) 4

• The v. space E is a direct sum of G and F ; and write E = G ⊕ F , if E = G + F and
G ∩ F = {0E} .

• We say that G is supplementary of F in E (or the opposite) if E = G⊕ F.

• We have E = G ⊕ F ⇔ Every vector v of E is written in a unique way a + b, where
a ∈ G and b ∈ F.

Proposition 1.1. Let F be a subset of E. We have

F is a vector subspace of E
iff⇔

(i) ∀ u, v ∈ F : u+ v ∈ F
(ii) ∀ λ ∈ K, ∀ v ∈ F : λ · v ∈ F
(iii) F 6= ∅ (0E ∈ F )

Or equivalently,

F is a v. subspace of E
iff⇔

(i) F 6= ∅ (0E ∈ F )
(ii) ∀ λ, µ ∈ K, ∀ u, v ∈ F : λ · u+ µ · v ∈ F.

Example 1.1. Suppose that K = R or C. Then

Kn = {(x1, x2, ..., xn) : xi ∈ K}

is a vector space on K with the laws + and · defined by

1. ∀ (x1, x2, ..., xn) , (y1, y2, ..., yn) ∈ Kn :

(x1, x2, ..., xn) + (y1, y2, ..., yn) = (x1 + y1, x2 + y2, ..., xn + yn) ,

2. ∀ λ ∈ K, ∀ (x1, x2, ..., xn) ∈ Kn :

λ (x1, x2, ..., xn) = (λx1, λx2, ..., λxn) ,

where 0Kn = (0, 0, ..., 0)︸ ︷︷ ︸
n-times

is the zero vector of this space.

For these laws, we have

• Rn is a v. space over R,

• Rn is not a v. space over C,

• Cn is a v. space over C,

c©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



1.1. VECTOR SPACE (A SUMMARY OF LESSONS) 5

• Cn is a v. space over R.

Let E be a v. space on K, and let v, v1, v2, ..., vn ∈ E.

• We have: v is a linear combination of v1, v2, ..., vn
def⇔ ∃ λ1, λ2, ..., λn ∈ K :

v = λ1v1 + λ2v2 + ...+ λnvn.

• We always have 0E = 0.v1 + 0.v2 + ...+ 0.vn (where 0E is the zero vector of space E).

• The sum of two linear combinations is a linear combination.

• Multiplying a linear combination by a scalar is a linear combination.

Let E be a v. space on K and let v1, v2, ..., vn ∈ E. The set of all linear combinations of
vectors v1, v2, ..., vn we note it V ect (v1, v2, ..., vn) or 〈v1, v2, ..., vn〉 and we call it the subspace
generated by the vectors v1, v2, ..., vn. We have then

V ect (v1, v2, ..., vn) = {λ1v1 + λ2v2 + ...+ λnvn : λ1, λ2, ..., λn ∈ K} .

Moreover, we have

• V ect (0E) = {0E} .

• V ect (v1, v2, ..., vn) is a vector subspace of E (with v1, v2, ..., vn ∈ V ect (v1, v2, ..., vn)).
Therefore, the subspace generated by vectors of a space is a vector subspace. of this
space.

• If F is a vector subspace of E, then we have v1, v2, ..., vn ∈ F ⇔ V ect (v1, v2, ..., vn) ⊂
F. Therefore, the subspace generated by vectors is the smallest v. subspace contains
these vectors.

• If v = λ1v1 + λ2v2 + ...+ λnvn, then V ect (v1, v2, ..., vn, v) = V ect (v1, v2, ..., vn) .

• V ect (v1, v2, ..., vn, 0E) = V ect (v1, v2, . . . , vn) .

• If F = V ect (v1, v2, ..., vn) and G = V ect (u1, u2, ..., um), then

F +G = V ect (v1, v2, ..., vn, u1, u2, ..., um) .

Let E be a v. space over K, and let v1, v2, ..., vn ∈ E.
We call a linear relationship between the vectors v1, v2, ..., vn; any relation of the form

λ1v1 + λ2v2 + ...+ λnvn = 0E , where λ1, λ2, ..., λn ∈ K.

c©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



1.1. VECTOR SPACE (A SUMMARY OF LESSONS) 6

1. If λ1, λ2, ..., λn are all zero, we say that this linear relation is trivial.

2. If λ1, λ2, ..., λn are not all zero, we say that this linear relation is non-trivial.

We say that the vectors v1, v2, ..., vn are linearly independent (or free) if there is no non-
trivial linear relationship between the vectors v1, v2, ..., vn, in other words; any linear rela-
tionship between vectors v1, v2, ..., vn is trivial; i.e.,

v1, v2, ..., vn are free def⇔

∀ λ1, λ2, ..., λn ∈ K : λ1v1 + λ2v2 + ...+ λnvn = 0E ⇒ λ1 = λ2 = ... = λn = 0.

• We say that the vectors v1, v2, ..., vn are linearly dependent (or linked) if they are not
free, in other words; if there is at least one non-trivial linear relationship between the
vectors v1, v2, ..., vn; i.e.,

v1, v2, ..., vn are linked def⇔

∃ λ1, λ2, ..., λn ∈ K (are not all null) : λ1v1 + λ2v2 + ...+ λnvn = 0E.

• The family of vectors {v1, v2, ..., vn} are said to be free if the vectors v1, v2, ..., vn are
free.

• The family of vectors {v1, v2, ..., vn} are said to be linked if the vectors v1, v2, ..., vn are
linked.

• Note that if a family contains a linked part, then this family is linked.

• If v ∈ E, then v 6= 0E ⇔ v is free; since we have

v 6= 0E ⇔ (∀λ ∈ K : λv = 0E ⇒ λ = 0) .

• The null vector or the zero vector 0E is linked; since we have 1.0E = 0E , which is a
non-trivial linear relationship.

• If a family of vectors contains the zero vector, then that family is related; i.e., family
{v1, v2, ..., vn, 0E} is linked, since {0E} is linked; or because

0.v1 + 0.v2 + ...+ 0.vn + 1.0E = 0E.

Let E be a vector space over K, and let v1, v2, ..., vn ∈ E.

c©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



1.1. VECTOR SPACE (A SUMMARY OF LESSONS) 7

• The family {v1, v2, ..., vn} is a base (or basis ) of E ⇔

{
1) E = V ect (v1, v2, ..., vn)

2) v1, v2, ..., vn are free.

Note that E = V ect (v1, v2, . . . , vn), i.e., E is spanned by v1, v2, ..., vn; or, we say that
{v1, v2, ..., vn} is a generated part of E.

• Please note, a basis of E is not always exists or unique.

• If E = V ect (v1, v2, ..., vn), then E admits at least one basis {u1, u2, ..., um}; with m ≤
n, and all the bases of E have the same number of vectors m. This unique number
m; denoted by dimE, is called the dimension of E.

• Ifv1, v2, ..., vn are free, then by definition {v1, v2, ..., vn} is a basis of E, and so dimE =

n. Notice, in this case, that every other basis E contains exactly n vectors.

• If v1, v2, ..., vn are linked, then a vector of them is a linear combination of the other
vectors. For example, v1 = λ2v2 + ...+ λnvn. Therefore,

V ect (v1, v2, ..., vn) = V ect (v2, v3, ..., vn) .

Now, if v2, v3, ..., vn are free, then by definition {v2, v3, ..., vn} is a basis of E. Hence,
dimE = n− 1. But, if v2, v3, ..., vn are linked, then, a vector of them is a linear combination
of the others; For example vn = α2v2 + α3v3...+ αn−1vn−1. Hence,

E = V ect (v2, v3, ..., vn) = V ect (v2, v3, ..., vn−1) ...and so on.

• Note that the vector subspace {0E} has no basis; but by convention we put dim {0E} =

0 ({0E} = V ect ({0E}), where {0E} is linked).

• Note that if E = V ect (v), where v 6= 0E (i.e., v is free), then {v} is a base of E. In this
case, dimE = 1.

• For the vector space Kn over K, we have dimKn = n; since the family of vectors
{e1, e2, ..., en} form a basis of Kn; which is called the canonical basis of Kn, where

e1 = (1, 0, ..., 0) , e2 = (0, 1, ..., 0) , ..., en = (0, 0, ..., 1) .

• For the vector space Cn on the field R, we have dimCn = 2n; since the family of
vectors

{e1, ie1, e2, ie2, ..., en, ien} , where i2 = −1

form a basis of Cn over R; which is called the canonical basis of Cn over R.

c©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



1.1. VECTOR SPACE (A SUMMARY OF LESSONS) 8

• For the vector space Rn [x], we have dimRn [x] = n+ 1; because the family of vectors
{1, x, x2, ..., xn} form a basis of Rn [x]; which is called the canonical basis of Rn [x].

• If dimE = n, then

{v2, v3, ..., vn} is a basis of E ⇔ E = V ect (v2, v3, ..., vn)⇔ v2, v3, ..., vn are free.

• If F is a vector subspace of E, then we have dimF ≤ dimE.

• If F is a vector subspace of E, then we have dimF = dimE ⇔ F = E.

• Dimension theorem. If F and G are two vector subspaces E, then we have

dim (F +G) + dim (F ∩G) = dimF + dimG. (1.1)

• Assume that B = {v1, v2, ..., vn} is a basis of E and let v ∈ E. Then

∃ λ1, λ2, ..., λn ∈ K : v = λ1v1 + λ2v2 + ...+ λnvn,

since E = V ect (v1, v2, ..., vn). But; since the vectors v1, v2, ..., vn are free, then the
scalars λ1, λ2, ..., λn are unique. In this case the scalars ( λ1, λ2, ..., λn) we call them
the coordinates of v in the basis B.

• In the vector space Kn over K, we have ∀ (x1, x2, ..., xn) ∈ Kn :

(x1, x2, ..., xn) = x1e1 + x2x2 + ...+ xnen,

where {e1, e2, ..., en} is the canonical basis of Kn. Therefore, (x1, x2, ..., xn) are the
coordinates of the vector (x1, x2, ..., xn) in the canonical basis {e1, e2, ..., en}.

• In the vector space Cn on R, we have ∀ (z1, z2, ..., zn) ∈ Cn :

(z1, z2, ..., zn) = x1e1 + y1 (ie1) + x2x2 + y2 (ie2) + ...+ xnen + yn (ien) ,

where zk = xk + iyk (1 ≤ k ≤ n) and {e1, ie1, e2, ie2..., en, ien} is the canonical ba-
sis of Cn over R. Hence, (x1, y1, x2, x2, ..., xn, yn) are the coordinates of the vector
(z1, z2, ..., zn) in the canonical basis.

• In the v. space Rn [X], we have

∀P ∈ Rn [x] : P = a0 + a1 · x+ a2 · x2 + ...+ an · xn,

c©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



1.2. LINEAR MAPPINGS AND LINEAR FORMS 9

where {1, x, x2, ..., xn} is the canonical basis of Rn [x] .Hence, (a0, a1, a2, ..., an) are the
coordinates of P = a0 + a1 · x+ a2 · x2 + ...+ an · xn in the canonical basis.

• In the vector spaceM2 (R), we have: ∀A = (aij) ∈M2 (R) :

A = a11 ·

(
1 0

0 0

)
+ a12 ·

(
0 1

0 0

)
+ a21 ·

(
0 0

1 0

)
+ a22 ·

(
0 0

0 1

)
,

where {
e1 =

(
1 0

0 0

)
, e2 =

(
0 1

0 0

)
, e3 =

(
0 0

1 0

)
, e4 =

(
0 0

0 1

)}

is the canonical basis ofM2 (R) .Hence, dimM2 (R) = 4. More generally, dimMn (R) =

n2.

1.2 Linear mappings and linear forms

Let E and F be two vector spaces over the same field K, and let f : E → F be a mapping1

from E to F .

• f is a linear mapping2 def⇔ ∀ u, v ∈ E, ∀ α ∈ K :{
f (u+ v) = f (u) + f (v)

f (α · v) = α · f (v) .
(1.2)

• f is a linear mapping
prop⇔ ∀ α, β ∈ K, ∀ u, v ∈ E :

f (α · u+ β · v) = α · f (u) + β · f (v) . (1.3)

• We denote by L (E,F ) the set of all linear mappings from E to F.

• If E = F , then we denote by L (E) instead of L (E,E) .

Definition 1.2. Let E be a vector space over K. A linear form over K is a linear mapping
from E to K. The vector space of all linear forms on E, denoted by E∗, is called the dual
vector space of E.

Example 1.2. Using (1.2) or (1.3), we can easily prove that the following mappings are
linear forms on E

1Sometimes we say a map instead of mapping.
2– – we say a linear functional instead of a linear mapping.
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1.2. LINEAR MAPPINGS AND LINEAR FORMS 10

1. The mapping f : R2 → R such that f (x, y) = 2x− y is a linear form on R2.

2. The mapping f : Kn → R such that

f (x1, x2, ..., xn) = a1x1 + a2x2 + ...+ anxn

is a linear form on Rn, where ai ∈ R, for i = 1, 2, ..., n.

3. The mapping f : Rn [x]→ R such that

f (p) =

∫ b

a

p (t) dt

is a linear form on Rn [x].

4. The mapping f :Mn (K)→ R such that f (A) = tr (A) is a linear form onMn (K).

5. Let E be vector space of finite dimension (or a finite-dimensional vector space), say
dimE = n and let B = {u1, u2, ..., un} be a basis of E. Note that every vector v ∈ E
can be written (uniquely) as u = α1u1 + ...+ αnun. For each i ∈ 1, n, the mapping

u∗i : E → K
u 7→ u∗i (u) = αi

(1.4)

is a linear form on E.

The dual space of E, denoted E∗, is the v. space of all linear mappings on E. In other
words, E∗ = L (E,K) .

We have the following facts:

• If E has finite dimension, then dimE = dimE∗.

• If u1, u2, ..., un is a basis ofE, then the dual basis of u1, u2, ..., un is the list Φ1,Φ2, ...,Φn

of elements of E∗, where each Φi : E → K is a linear mapping such that

Φi (uj) =

{
1, if i = j

0, otherwise.
(1.5)

In the case when E = Kn, we can easily find the corresponding dual basis of the
canonical basis of Kn, namely (e) = {e1, e2, ..., en}. Define the mappings:

Φi : Kn → K

(x1, x2, ..., xn) 7→ xi
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We see that Φi (ej) satisfies (1.5). Hence, {Φ1,Φ2, ...,Φn} is the corresponding dual
basis of the canonical basis (e) of Kn.

• Every basis of E∗is the dual basis of a unique basis of E, it is called the predual basis.

• Let f be a nonzero linear form over E. Then there exists a nonzero vector v such that
f (v) = 1. In fact, since f 6= 0, there exists a nonzero vector x such that f (x0) 6= 0.
The results holds for v =

x0
f (x0)

.

• Let E be a finite-dimensional v. space, namely dimE = n. If v ∈ E is a nonzero
vector, then there exits a linear form f ∈ E∗ such that f (v) = 1. Indeed, let v =

α1u1 + ... + αnun be a a nonzero vector. Then there exists i0 ∈ 1, n such that αi0 6= 0.
Define u∗i0 as in (1.4). That is, u∗i0 (v) = αi0 6= 0. Hence, the result holds if we put

f =
u∗i0

u∗i0 (v)
.

Proposition 1.2 (Changing dual basis). Let B1 and B2 be two basses of E and let P be the
passage matrix from B1 to B2. Then (P−1)

t is passage matrix from B∗1 to B∗2.

Definition 1.3 (dual mapping). If Φ ∈ L (E,F ), then the dual mapping of f is the linear
mapping Φ∗ ∈ L (E∗, F ∗) defined by Φ∗ (f) = f ◦ Φ, for f ∈ E∗.

Example 1.3. Define the mapping

Φ : Rn [x]→ R

p 7→ Φ (p) = p′,

where p′ denotes the derivative of p. Let us take, for example f : Rn [x] → R such that
f (p) = p (n) (here n is a positive integer). Then Φ∗ (f) is the linear mapping on Rn [x]

given by
(Φ∗ (f)) (p) = (f ◦ Φ) (p) = f [Φ (p)] = f (p′) = p′ (n) .

Hence, Φ∗ (f) is the linear map on Rn [x] that takes p to p′ (n) .

Suppose further that f : Rn [x] → R such that f (p) =
∫ b
a
p (t) dt. Then Φ∗ (f) is the

linear mapping on Rn [x] given by

(Φ∗ (f)) (p) = (f ◦ Φ) (p) = f [Φ (p)] = f (p′) =

∫ b

a

p′ (t) dt = p (b)− p (a) .

Hence, Φ∗ (f) is the linear map on Rn [x] that takes p to p (b)− p (a) .

Let us state some algebraic properties of dual maps:

1. (Φ1 + Φ2)
∗ = Φ∗1 + Φ∗2 for every Φ1 + Φ2 ∈ L (E,F ) .
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2. (α · Φ2)
∗ = α · Φ∗ for all Φ ∈ L (E,F ) and α ∈ K.

3. (Φ1 ◦ Φ2)
∗ = Φ∗2 ◦ Φ∗1 for all Φ1 ∈ L (E,F ) and Φ2 ∈ L (F,G) .

• Any linear mapping is a homomorphism (we can talk about the kernel, the image and
so on).

• If f : E → F is linear mapping, then f (0E) = 0F (the converse is false).

• If f (0E) 6= 0F , then f : E → F is not a linear mapping.

• Be careful, if f : E → F is linear and v ∈ E, then : f (v) = 0F ; v = 0E (in general).
But, if f is injective, then f (v) = 0F ⇒ v = 0E (since f (v) = 0F ⇔ f (v) = f (0E)).

• Every linear mapping f : E → E is called Endomorphism of E.

• Every linear mapping f : E → F bijective is called Isomorphism.

• Every bijective Endomorphism of E is called Automorphism of E.

• Every linear mapping f : Rn −→ Rm is uniquely defined as follows:

f (x1, x2, ..., xn) = (a11x1 + a12x2 + ...+ a1nxn, ..., am1x1 + am2x2 + ...+ amnxn) ,

where (aij) ∈ R for all i, j (i = 1, 2, ...,m and j = 1, 2, ..., n).

• The kernel of a linear mapping f : E → F is the set defined by

ker f = {v ∈ E : f (v) = 0F} . (1.6)

We can easily prove that ker f is a vector subspace of E.

• The image of a linear mapping f : E → F is the set defined by

Im f = {f (v) : v ∈ E} .

We can easily prove that Im f is a vector subspace of F.

• If f : E → F is the zero linear mapping (i.e., f (v) = 0, ∀ v ∈ E), then ker f = E and
Im f = {0F} .

• The identical mapping of E, i.e., idE is linear, where ker (idE) = {0E} and Im (idE) =

E.
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• If f : E → F is linear, then

E = V ect (v1, v2, ..., vn)⇒ Im f = V ect (f (v1) , f (v2) , ..., f (vn)) .

In practice, we use the canonical basis of E. So, we have in particular:

• If f : Rn −→ F is linear and {e1, e2, ..., en} is the canonical basis of Rn, then we have

Im f = V ect (f (e1) , f (e2) , ..., f (en)) ,

where e1 = (1, 0, ..., 0) , e2 = (0, 1, ..., 0) , en = (0, 0, ..., 1) .

• If f : Rn [x] −→ F is linear and {1, x, x2, ..., xn} is the canonical basis of Rn [x], then
we have

Im f = V ect (f (1) , f (x) , ..., f (xn)) ,

where e1 = (1, 0, ..., 0) , e2 = (0, 1, ..., 0) , en = (0, 0, ..., 1) .

• If f is linear, then the number dim (Im f) is called the rank of f and we note it by
rank (f), i.e.,

rank (f) = dim (Im f) .

• If f : E → F is linear, then

f is injective ⇔ ker f = {0E} ⇔ dim (ker f) = 0,

and also, we have

f is surjective ⇔ Im f = F ⇔ dim (Im f) = dimF.

• If f : E → F is linear, then

dimE = dim ker f + dim Im f. (Rank Theorem)

• If f : E → F is linear with dimE = dimF, then

f is surjective⇔ f is bijective⇔ f is injective.

In practice, we use this result if E = F , i.e., if f is an Endomorphism on E.
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1.3 Proposed Problems on linear forms

Exercise 1. Determine the linear form f defined by

f (1, 1, 1) = 0, f (2, 0, 1) = 1 and f (1, 2, 3) = 4,

then, determine ker f . The same question for g, where g (1, 0, 1) = −1, g (0, 1, 1) = 0 and
g (−1, 1, 1) = 2.

Exercise 2. Let E = R2 and f1, f2 ∈ E∗ such that

f1 (x, y) = x+ y, f2 (x, y) = x− y.

1. Show that {f1, f2} is a base of E∗.

2. Express g and h, in this base, where g (x, y) = x and h (x, y) = 2x− 6y.

3. Determine the predual base of {f1, f2}.

4. Note that {(1, 2) , (−1, 1)} is a base of E, find its dual base.

Exercise 3. Let {e1, e2, e3} be the canonical basis of E = R3 and let f1, f2, f3 ∈ E∗

defined by 
f1 = 2e∗1 + e∗2 + e∗3

f2 = −e∗1 + 2e∗3

f3 = e∗1 + 3e∗2.

1. Prove that {f1, f2, f3} is a basis of E∗.

2. Determine the predual basis of {f1, f2, f3}.

3. Prove that A = {(1, 1, 1) , (−1, 2, 1) , (0, 1, 3)} is a basis of E, and find its dual basis,
say A∗.

4. Calculate ϕ the passage matrix from {f1, f2, f3} to A∗.

Exercise 4. Consider the vector space of real polynomials of degree not exceeding 2,
i.e., E = R2 [x]. Define the mappings ϕ0, ϕ1, ϕ2 from E to R by

∀ p ∈ E, ϕ0 (p) = p (0) , ϕ1 (p) = p (1) et ϕ2 (p) =

∫ 1

0

p (t) dt.

1. Prove that ϕi ∈ E∗ for i = 0, 1, 2.

2. Show that {ϕ0, ϕ1, ϕ2} is a basis of E∗.
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3. Determine the predual basis of {ϕ0, ϕ1, ϕ2}.

4. Prove that {1, 1 + x, 1 + x+ x2} is a basis of E, and find its dual.
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CHAPTER 2

BILINEAR FORMS OVER A VECTOR SPACE

I n this chapter we present a basic introduction on Bilinear forms over a vector space
including rank, kernel, Orthogonalization of Gram-Schmidt, Orthogonal matrices and

diagonalization of real symmetric matrices.

2.1 Bilinear forms (Definitions)

In this section, R is the field of real numbers and E is a vector space over R. For example,
E = Rn, Rn [x] or Pn [x], C ([a, b] ,R), C∞ ([a, b] ,R) andMn (R) with n ≥ 1, and so on.

Let E be a vector space on R. As above, a linear form1 is a mapping f from E to R such
that for every (x, y) ∈ E2 and λ ∈ R, we have

(i) f (x+ y) = f (x) + f (y) ,

(ii) f (λx) = λf (x).

Similarly, we have the following definition:

Definition 2.1. Let E be a vector space on R. A bilinear form is a mapping f from E2 to R
such that for every (x, x′, y, y′) ∈ E4 and λ ∈ R, one has

(i) f (λx+ x′, y) = λf (x, y) + f (x′, y) ,

(ii) f (x, λy + y′) = λf (x, y) + f (x, y′) .

As in (1.2) and (1.3), note that a bilinear form is a mapping f fromE2 to R such that f is
linear from the left and linear from the right. For details, we present the following remark.

Remark 2.1. Let f : E×E → R be a bilinear form on E. This means that for all x, x′, y, y′ ∈
E and λ ∈ R we have

• f (x+ x′, y) = f (x, y) + f (x′, y),

1If f : E × E → F is bilinear, then f is called a bilinear mapping. However, if f : E × E → K is bilinear,
then f is called a bilinear form.

16



2.1. BILINEAR FORMS (DEFINITIONS) 17

• f (x, y + y′) = f (x, y) + f (x, y′),

• f (λx, y) = λf (x, y),

• f (x, λy) = λf (x, y) .

Definition 2.2. Let f : E2 → R be a bilinear form.

1. f is said to be symmetric if for each (x, y) ∈ E2, f (x, y) = f (y, x) .

2. f is said to be skew-symmetric if for each (x, y) ∈ E2, f (x, y) = −f (y, x) .

3. f is said to be alternating if for each x ∈ E, f (x, x) = 0.

Example 2.1. We can easily check that the following mappings are symmetric bilinear
forms.

1. f : R× R→ R, f (x, y) = xy.

2. f : R2×R2→ R, ((x, y) , (x′, y′)) 7→ xx′ + yy′.

3. ϕ : P [x]×P [x]→ R with ϕ (p, q) =
∫ b
a
p (t) q (t) dt.

4. Let x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3 with f (x, y) = x1y1 + x2y2 − x3y3.

Example 2.2. Let u = (x, y) , v = (x′, y′) ∈ R2 with f (u, v) = xy′ − x′y. Then f is a skew-
symmetric alternating bilinear form.

Notation 2.1. Let L2 (E) denote the vector space of all bilinear forms overE, S2 (E) denote
the vector space of all symmetric bilinear forms overE andA2 (E) denote the vector space
of all skew-symmetric bilinear forms over E.

We can prove the following fact: L2 (E) = S2 (E) ⊕ A2 (E) . Indeed, we have f0 = 0 ∈
S2 (E) ∩ A2 (E) . Also, if f ∈ S2 (E) ∩ A2 (E), then by Definition 2.2 f (x, y) = f (y, x) =

−f (y, x) for every x, y ∈ E. Hence, f (x, y) = 0 for every x, y ∈ E. So, f = f0. Thus, we
have proved that S2 (E) ∩ A2 (E) = {f0} . Now, let f ∈ L2 (E). For any x, y ∈ E, we see
that

f (x, y) =
f (x, y)− f (y, x)

2
+
f (x, y) + f (y, x)

2
= h1 (x, y) + h2 (x, y) ,

where h1 is skew-symmetric and h2 is symmetric.

c©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



2.1. BILINEAR FORMS (DEFINITIONS) 18

Theorem 2.1. Let

x =


x1

x2
...
xn

 , y =


y1

y2
...
yn

 ∈ Rn.

Let A ∈ Mn (R) be a square matrix. Define f : Rn × Rn→ R, (x, y) 7→ xt · A · y. Then f is a
bilinear form over Rn. Moreover, if A is symmetric, then f is also symmetric.

Proof. For all x, x′, y ∈ Rn and for all λ ∈ R we have

f (λx+ x′, y) = (λx+ x′)
t · A · y

= λxt · A · y + (x′)
t · A · y

= λf (x, y) + f (x′, y) .

Thus, f is linear from the left. We use the same manner to show that f is linear from the
right. For every x, y, y′ ∈ Rn and λ ∈ R we have

f (x, λy + y′) = xtA (λy + y′)

= λxtAy + xtAy′

= λf (x, y) + f (x, y′) .

Next, assume that A is symmetric. We show that f is also symmetric. In fact, we have

f (x, y) = xtAy

=
(
xtAy

)t (since xtAy ∈ R)

= ytAt
(
xt
)t (well-known result)

= ytAx (since A is symmetric)

= f (y, x) .

Hence, f (x, y) = f (y, x) .

The proof is finished.

We conclude from Theorem 2.1 the following corollary.

Corollary 2.1. Every matrix A ∈ Mn (R) produces a bilinear form over Rn and every
symmetric matrix A ∈Mn (R) produces a symmetric bilinear form over Rn.

Theorem 2.2. Let B and B′ be two bases of E. Let P be the passage matrix from B to B′ and let
f : E×E → R be a bilinear form overE. IfA =Mf (B) andA′ =Mf (B′), thenA′ = P t ·A ·P.
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2.2. ORTHOGONAL MATRICES 19

Proof. Assume that B = {e1, e2, ..., en} and B′ = {e′1, e′2, ..., e′n}. For every x, y ∈ E, we see
that 

x =
∑n

i=1 xi · ei

x =
∑n

i=1 x
′
i · e′i

and


y =

∑n
i=1 yi · ei

y =
∑n

i=1 y
′
i · e′i

That is, x = P · x′ and y = P · y′. Therefore,

f (x, y) = xt · A · y = (P · x′)t · A · (P · y′) = (x′)
t · P tAP︸ ︷︷ ︸ ·y′.

Thus, the matrix of f with respect to the basis B′ is given by: A′ = P t · A · P, where A is
the matrix of f with respect to the basis B. The proof is finished.

Theorem 2.3. If dimE = n, then dimL2 (E) = n2.

Proof. Let {u1, u2, ..., un} be a basis of E. Define the bilinear forms fi,j by

fi,j (er, es) =

{
1, for (i, j) = (r, s)

0, for (i, j) 6= (r, s)

Let x =
∑n

i=1 xiui and y =
∑n

j=1 yjuj be two vectors of E. It is clear that

fi,j (x, y) = xiyj , for i = 1, 2, ..., n.

Now, let f ∈ L2 (E) and put f (er, es) = ars. It follows that

f (x, y) = f

(
n∑
i=1

xiui,
n∑
j=1

yjuj

)
=

n∑
i=1

n∑
j=1

xiyjf (ei, ej)

=
n∑
i=1

n∑
j=1

xiyjaij =
n∑
i=1

n∑
j=1

xiyjfi,j (x, y) .

Then these n2 bilinear forms fi,j generated the vector space fi,j . Since (fi,j)1≤i,j≤n form a
free family, we conclude that (fi,j)1≤i,j≤n is a basis of L2 (E) . The proof is finished.

2.2 Orthogonal matrices

Definition 2.3. An invertible square matrix A is said to be orthogonal if At = A−1.

Clearly, a sufficient and necessary condition forA to be orthogonal is thatAAt = AtA =

I , , where I is the identity matrix.
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Example 2.3. By the above definition, the following matrices:(
cosα sinα

− sinα cosα

)
with α ∈ R, (2.1)

(
1√
2

1√
2

−1√
2

1√
2

)
and


1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0 −2√
6

1√
3

 .

are orthogonal.

Proposition 2.1. Let A ∈Mn (R) be an orthogonal matrix. Then det (A) = ±1.

Proof. Since At = A−1, we conclude that AtA = In. This gives

det
(
AtA

)
= det

(
At
)

det (A) = (det (A))2 = det (In) = 1.

Hence, det (A) = ±1.

We need to define matrix norms and scalar product over a vector space E.

2.2.1 Matrix norms

Definition 2.4. Let E be a vector space over K ( R or C). The norm over E, denoted by ‖.‖,
is a mapping

‖.‖ : E → R+

x 7→ ‖x‖ (we say: the norm of x)

which satisfy the following properties:

1. For every x ∈ E : ‖x‖ ≥ 0 and ‖x‖ = 0⇔ x = 0E;

2. For every x ∈ E and scalar α ∈ K : ‖αx‖ = |α| . ‖x‖ ;

3. For every x, y ∈ E : ‖x+ y‖ ≤ ‖x‖+ ‖y‖ .

In this case, the couple (E, ‖.‖) is called normed vector space or normed space. So, a
normed space E is a v. space endowed by a norm.

Example 2.4. Here, we only use the two vector spaces, Kn andMn (K) with K = R or C.
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1. Define over Kn the following norms:

‖x‖1 =
n∑
i=1

|xi| , ‖x‖2 =

(
n∑
i=1

|xi|2
) 1

2

,

‖x‖∞ = max
1≤i≤n

(|xi|) .

2. Define overMn (K) the following norms:

‖A‖1 = max
j

n∑
i=1

|aij| and ‖A‖∞ = max
i

n∑
j=1

|aij|

‖A‖2 =

(
n∑
i,j

|aij|2
) 1

2

and ‖A‖p =

(
n∑
i,j

|aij|p
) 1

p

As an application, for x =
(
−1 1 −2

)t
, we have

‖x‖1 = 4, ‖x‖2 =
√

6 and ‖x‖∞ = 2.

and for A =

(
−1 −2

7 3

)
∈Mn (R), we also have

‖A‖1 = max (8, 5) = 8, ‖A‖2 = 3
√

7 and ‖A‖∞ = max (3, 10) = 10.

Lemma 2.1. For each matrix A ∈Mn (K) and for each x ∈ Kn, we have the following inequality:

‖Ax‖ ≤ ‖A‖ ‖x‖ .

The above lemma remains interesting for future study.

2.2.2 Scalar Product (Inner product) over a real vector space

Definition 2.5. Let E be real vector space. The inner product over E is a mapping 〈., .〉
defined by

〈., .〉 : E × E → R

(x, y) 7→ 〈x, y〉

which satisfy the following properties:

1. For all x ∈ E, 〈x, x〉 ≥ 0 and 〈x, x〉 = 0⇔ x = 0.
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2. For all x, y ∈ E, we have 〈x, y〉 = 〈y, x〉 .

3. For all x ∈ E and scalar α ∈ R, we have 〈λx, y〉 = λ 〈x, y〉

4. For all x, y, z ∈ E, we have 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 .

We say, the scalar product between x and y, or the inner product between x and y.

Example 2.5. Define over Rn the scalar product 〈., .〉 by

∀ x =


x1

x2
...
xn

 , y =


y1

y2
...
yn

 ∈ Rn : 〈x, y〉 =
n∑
i=1

xiyi. (2.2)

We can write (2.2) as2: 〈x, y〉 = xt ·y. In particular, for x =
(
x1 x2

)t
and y =

(
y1 y2

)t
,

we have
〈x, y〉 = 〈(x1, x2) , (y1, y2)〉 = x1y1 + x2y2.

Example 2.6. Define over the vector space C([a, b]) the inner product:

∀ f, g ∈ C([a, b]) : 〈f, g〉 =

∫ b

a

f (x) · g (x) dx.

Theorem 2.4. Let A ∈Mn (R). The following properties are equivalent:

(i) A is orthogonal.

(ii) For every x ∈ Rn, ‖Ax‖ = ‖x‖ .

(iii) For every x, y ∈ Rn, 〈Ax,Ay〉 = 〈x, y〉 .

Proof. 1)⇒2). Assume that A is orthogonal. Let x ∈ Rn we have

‖Ax‖2 = 〈Ax,Ax〉 =
〈
x,AtAx

〉
= 〈x, Inx〉 = 〈x, x〉 = ‖x‖2 . (2.3)

Therefore, ‖Ax‖ = ‖x‖ .
2)⇒3). Suppose that ∀ x ∈ Rn : ‖Ax‖ = ‖x‖ . Let x, y ∈ Rn we see that

‖A (x+ y)‖2 = ‖x+ y‖2 .
2Sometimes we use the notation tx · y instead of xt · y. We also write tA ·A instead of At ·A when A is a

square matrix.
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This means that 〈Ax+ Ay,Ax+ Ay〉 = 〈x+ y, x+ y〉, or, equivalently,

〈Ax,Ax〉+ 〈Ay,Ay〉+ 2 〈Ax,Ay〉 = 〈x, x〉+ 〈y, y〉+ 2 〈x, y〉 .

Thus, 〈Ax,Ay〉 = 〈x, y〉 .
3)⇒1). Assume that ∀ x, y ∈ Rn : 〈Ax,Ay〉 = 〈x, y〉 . Then

〈
x,AtAy

〉
= 〈x, y〉 ,

i.e., 〈x,AtAy − y〉 = 0. In particular, for x = xtAy − y, we obtain

∥∥AtAy − y∥∥2 = 0.

Hence, AtAy = y. Consequently, AtA = In.

Example 2.7 (Homework). Consider the matrix

A =

(
0 −1

1 0

)
.

For any θ real, show that eθA is orthogonal3.

2.3 Gram-Schmidt Orthonormalization Theorem

LetE be a Euclidean space and letB = {u1, u2, ..., un} be a basis ofE. There exists a unique
orthonormal basis {e1, e2, ..., en} of E satisfying the following conditions:

1. V ect {e1, e2, ..., en} = V ect {u1, u2, ..., un} .

2. 〈ei, ui〉 = 0 for i = 1, 2, ..., n.

The following formulas permit us to find such orthonormal basis recursively as fol-
lows: 

e1 =
u1
‖u1‖

,

vk = uk −
∑k−1

i=1 〈ei, uk〉 · ei,
ek =

vk
‖vk‖

.

(2.4)

Example 2.8. Let us take E = R2 and B = {(1,−1) , (1, 1)} = {u1, u2}. Clearly, B is a
basis of R2. Now, we construct the corresponding orthonormal basis using Gram-Schmith

3We can prove that A is diagonalizable, where eθA is given by (2.1).
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method. First, we have

e1 =
(1,−1)√

2
=

(
1√
2
,
−1√

2

)
and

v2 = u2 − 〈e1, u2〉 · e1

= (1, 1)−
〈(

1√
2
,
−1√

2

)
, (1, 1)

〉
·
(

1√
2
,
−1√

2

)
= (1, 1) .

Hence,

e2 =
v2
‖v2‖

=

(
1√
2
,

1√
2

)
.

We deduce that B = {e1, e2} is an orthonormal basis of R2. Similarly, let

B = {(1, 1, 1, ) , (0, 1, 1, ) , (0, 0, 1)} = {u1, u2, u3} .

We have e1 =
u1
‖u1‖

=
(

1√
3
, 1√

3
, 1√

3

)
. Next, by (2.4) we have

v2 = u2 − 〈e1, u2〉 · e1

= (0, 1, 1)−
〈((

1√
3
,

1√
3
,

1√
3

)
, (0, 1, 1)

)〉
·
(

1√
3
,

1√
3
,

1√
3

)
= (0, 1, 1)− 2√

3
·
(

1√
3
,

1√
3
,

1√
3

)
=

(
−2

3
,
1

3
,
1

3

)
.

Hence, e2 =
v2
‖v2‖

=
(
−2√
6
, 1√

6
, 1√

6

)
. Also, by by (2.4),

v3 = u3 − 〈e1, u3〉 e1 − 〈e2, u3〉 e2

= (0, 0, 1)−
〈((

1√
3
,

1√
3
,

1√
3

)
, (0, 0, 1)

)〉
·
(

1√
3
,

1√
3
,

1√
3

)
−〈((

−2√
6
,

1√
6
,

1√
6

)
, (0, 1, 1)

)〉
·
(
−2√

6
,

1√
6
,

1√
6

)
=

(
0,
−1

2
,
1

2

)
.

Thus, e3 =
(

0, −1√
2
, 1√

2

)
. We deduce that B = {e1, e2, e3} is an orthonormal basis of R3.

Example 2.9 (Homework). LetB = {(1, 2) , (3, 4)}. Prove thatB is a basis of R2. Transform
B to an orthonormal basis. Ans. B =

{(
1√
5
, 2√

5

)
,
(

2√
5
, −1√

5

)}
.
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2.4 Diagonalization of real symmetric matrices

Recall that a matrix A ∈Mn (C) is said to be symmetric if At = A. It is well known that for
any matrixA ∈Mn (R), the matricesAtA andAAt are symmetric. IfA is skew-symmetric,

then A2 is symmetric. Moreover, A + At is always symmetric and A− At is always skew-
symmetric. So we can easily prove that

Mn (R) = Sn (R)⊕An (R) .

We can easily show that ifA is symmetric, then eA is also symmetric. Indeed, by definition,
if A is symmetric then we have

(
eA
)t

=

(
+∞∑
i=0

Ai

i!

)t

=
+∞∑
i=0

(
Ai

i!

)t
=

+∞∑
i=0

(At)
i

i!
=

+∞∑
i=0

Ai

i!
= eA.

The result holds. Another important result is given by:

Lemma 2.2. Every symmetric matrix A ∈Mn (R) is diagonalizable. Moreover, every symmetric
matrix A ∈Mn (R) can be represented in the form:

A = P ·D · P t, (2.5)

where P is orthogonal andD is diagonal whose diagonal entries are the eigenvalues ofA.

Proof. The proof is found in the course of Algebra III.

Definition 2.6. Let A ∈Mn (R) be a symmetric matrix. We have

• A is said to be positive if xtAx ≥ 0 for every x ∈ Rn.

• A is said to be definite positive if xtAx > 0 for every x ∈ Rn − {0Rn}.

Next, we present the following theorem.

Theorem 2.5. Let A ∈ Mn(R). Then A is symmetric definite positive if and only if there exists
an invertible matrix M such that

A = M tM . (2.6)

Proof. Assume that A = M tM with M is invertible. Then A is symmetric, since

At =
(
M tM

)t
= M t

(
M t
)t

= M tM = A.
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On the other hand, let x 6= 0 be a column vector. We put

(Mx)t =
(
y1 y2 . . . yn

)
.

Since M ∈ GLn (R), then Mx = y 6= 0. Therefore,

xtAx = xt
(
M tM

)
x = (Mx)t (Mx) = yty =

n∑
i=1

y2i > 0.

Thus, A is definite positive.
Conversely, assume that A is symmetric definite positive. By Lemma 2.5, we write

A is symmetric⇒ ∃ P ∈ GLn (R) such that A = PDP t,

where D = (λii) is diagonal whose diagonal elements are the eigenvalues of A. However,
since A est definite positive, the matrix D is also definite positive, that is, its diagonal
entries are strictly positive. Thus, we can define the diagonal matrix:

√
D = diag

{√
λ1,
√
λ2, ...,

√
λn

}
,

and rewriting, we get

A = PDP t = P
√
D
√
DP t = P

√
D
(√

D
)t
P t =

(
P
√
D
)(

P
√
D
)t

= M tM,

where M =
(
P
√
D
)t
∈ GLn (R); since P,

√
D ∈ GLn (R) . The proof of Theorem 2.2 is

finished.

Corollary 2.2. Let A be a symmetric definite positive matrix. Then det (A) > 0.

Proof. First method. Since A is a symmetric definite positive then by Theorem 2.5, A =

M tM , where M is invertible. Therefore,

det (A) = det
(
M tM

)
= det

(
M t
)

det (M) = (det (M))2 > 0.

Second method. Since A is a symmetric definite positive then Sp (A) ⊂ R∗+. On the other
hand, it is well-known that

det (A) =
∏

λi,

from which it follows that det (A) > 0.

Another interesting property of symmetric matrices is the following result:
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Proposition 2.2. Let A be a symmetric matrix and let (λ1, x), (λ2, y) be two eigenpairs of A with
α 6= β. Then 〈x, y〉 = 0.

Proof. Indeed, we see that

λ1 〈x, y〉 = 〈λ1x, y〉 = 〈Ax, y〉 =
〈
x,Aty

〉
= 〈x,Ay〉 = 〈x, λ2y〉 = λ2 〈x, y〉 ,

and since α 6= β, we deduce that 〈x, y〉 = 0.

2.5 Proposed Problems on bilinear forms

Exercise 1. Let v1 = (2, 1) and v2 = (1,−2) two elements of th real vector space R2 reported
by its canonical basis. Show that {v1, v2} is a basis of R2. Consider the linear form ϕ over
R2 defined by ϕ (v1) = 15 and ϕ (v2) = −10. Find ϕ (x) for anyx = (x1, x2) in R2. Give the
dual basis {v1, v2}.

Exercise 2. Let E be real vector space R2 related to its canonical basis {e1, e2} and let f
be the bilinear form defined on E setting for every x = (x1, x2) and (y1, y2) in E,

f (x, y) = 33x1y1 − 14 (x1y2 + x2y1) + 6x2y2.

1. Find the matrix of f relative to the basis {e1, e2}.

2. Prove that the vectors v1 = e1 + 2e2, v2 = 2e1 + 5e2 form a basis of E.

3. Write the matrix of f with respect to the basis {v1, v2} .

4. What is the rank of f?

Exercise 3. Let f be the bilinear form defined on the vector space R2 by{
f (e1, e1) = 1, f (e1, e2) = 1

f (e2, e1) = −1, f (e1, e2) = 3,

where {e1, e2} is the canonical basis of R2. Specify the value f (x, y) for every x, y in R2.
Exercise 4. Let f be the bilinear form on R2 setting x = (x1, x2) and (y1, y2) in R2,

f (x, y) = 2x1y1 − 3x1y2 + x2y2.

1. Find the matrix A′ of f related to the basis {u1 = (1, 0) , u2 = (1, 1)} .

2. Find the matrix B of f related to the basis {v1 = (2, 1) , u2 = (1,−1)} .
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3. Find the passage matrix P from the basis {u1, u2} to the basis {v1, v2} and verify that
B = P tA′P.

4. What is the rank of f?

Exercise 5. Let E be a vector space over a commutative field K (R or C). We denote
by S the set of symmetric bilinear forms on E and by A the set of antisymmetric bilinear
forms on E.

1. Show that S and A are two vector subspaces of E.

2. Show that the vector space of bilinear forms B(E) over E is the direct sum of S and
A.

3. We assume that E is of finite dimension n. What are the dimensions of S and A.

Exercise 6. Are the following functions E × E → R bilinear forms over the vector
space E? If yes, write their matrix in the canonical basis. Are they symmetric? When
E = R3, give their matrix in the basis B = {v1, v2, v3} , where v1 = (1, 0, 1), v2 = (1, 1, 0)

and v3 = (−1, 0, 1) .

• f (x, y) = x1y1 + x2y2 + x3y3, E = R3

• f (x, y) = y1y2 + x1y1 + x3y3, E = R2

• f (x, y) = x22y1 + 3x2y2, E = R3

• f (x, y) = x1y2 − 2x3 (y2 + 2y1) + 4x3y2 − y1x2, E = R3

Exercise 7. Let f1, f2 be bilinear forms on R3 whose matrices in the canonical basis are

A1 =

 1 −1 0

−1 −3 2

0 −2 −1

 and A2 =

 0 1 1
2

1 −2 −1
2

1
2

−1
2

0

 .

Write the matrices B1 and B2 of f1 and f2 with respect to the basis {v1, v2, v3}, where
v1 = (1, 0, 0) , v2 =

(
1
2
, 1
2
, 0
)
, v3 =

(−1
2
, −1

2
, 1
)
. Deduce the rank of each of the linear forms

f1and f2.

Exercise 8. Prove that the vectors e1 = (1, 0, 2) , e2 = (0, 1, 1) and e3 = (−1, 0, 1) form a
basis of R3.

Determine the matrix with respect to this basis of the bilinear form R3 × R3 → R
defined, for every x = (x1, x2, x3) and y = (y1, y2, y3) in R3 by

f (x, y) = 2x1y2 + x2y2 − x2y3 − 2x3y1 + x3y2 − x3y3.
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Exercise 9. Let f be a bilinear form on E and A its matrix representation in a given
basis. f is said to be symmetrical or symmetric (resp., skew-symmetric, alternating) if
f (x, y) = f (y, x) (resp., f (x, y) = −f (y, x) , f (x, x) = 0) for every x, y belong to E.

1. Prove that f is symmetric (resp., skew-symmetric) if and only if At = A (resp., At =

−A).

2. Prove that if f is alternating, then f is skew-symmetric.

3. Recall that the basic field K of E is infinite. Show that if f is antisymmetric, then f is
alternating.

4. Define f : R× R→ R and g : R2 × R2 → R such that f (x, y) = xy and

g ((x1, x2) , (y1, y2)) = x1y2 − x2y1,

where x, y ∈ R and (x1, x2) , (y1, y2) ∈ R2. Study whether f and g are symmetric,
skew-symmetric or alternating.

Exercise 10. Let (e) = {e1, e2, e3} be the standard basis of R3 and let f the bilinear
symmetric form over R3 given by

f (x, y) = x1y1 + 6x2y2 + 56x3y3 − 2 (x1y2 + x2y1) + 7 (x1y3 + x3y1)− 18 (x2y3 + x3y2) ,

for x = (x1, x2, x3) and y = (y1, y2, y3) in R3.

1. Find the matrix of f with respect to the basis (e).

2. Prove that the vectors e′1 = e1, e
′
2 = 2e1 + e2 and e′3 = −3e1 + 2e2 + e3 form a basis of

R3.

3. Write the matrix of f with respect to the basis (e′) = {e′1, e′2, e′3}.
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CHAPTER 3

SYMMETRIC BILINEAR FORMS AND

QUADRATIC FORMS

I n this chapter we focus on the goal of symmetric bilinear forms which define quadratic
forms, where every bilinear form is uniquely represented as the sum of a symmetric

bilinear form and a skew-symmetric bilinear form. Let us start by the following definition:

Definition 3.1. Let E be a vector space over R. A mapping q : E → R is said to be
quadratic form if there exists a symmetric bilinear form f : E×E → R such that f (x, x) =

q (x) for any x ∈ E. In this case, f is said to be the polar form of q. Thus, f is the polar for
of q if and only if f is bilinear, symmetric and f (x, x) = q (x) for any x ∈ E.

Example 3.1. Using the above definition, we can easily show that the following mappings
are quadratic forms over E.

1. E = R and q : E→ R, x 7→ x2.

2. E = R2 and q : E→ R, (x, y) 7→ x2 + y2.

3. E = P [x] and q : E→ R, p 7→=
∫ b
a
p2 (t) dt.

4. E = R3 and q : E→ R, (x1, x2, x3) 7→ x21 + x22 − x23.

The corresponding polar forms are given in Example 2.1.

Notation 3.1. Let q : E → R be a quadratic form over E. We denote by Q2 (E) the set of
all quadratic forms over E.

3.1 Relation between a quadratic form and its polar form

Let q : E → R be a quadratic form and let u, v ∈ E. Then the polar form of q, namely f

satisfies:
f (u, v) =

1

4
[q (u+ v)− q (u− v)] =

1

2
[q (u+ v)− q (u)− q (v)] . (3.1)

30
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In general, if we would like to prove that a mapping q : E → R is a quadratic form, we
first define the mapping f from E2 to R by f : E × E→ R,

(u, v) 7→ 1

2
[q (u+ v)− q (u)− q (v)] .

and by Definition 3.1 we must prove the following facts:

1. f is bilinear,

2. f is symmetric,

3. f (x, x) = q (x) for any x ∈ E.

Example 3.2. Define the mappingQ : P2 [x]→ R, p 7→ p (0) p (1). Show thatQ is a quadratic
form over P2 [x]. In deed, by (3.1) we obtain ϕ : P2 [x]× P2 [x]→ R, where

(p, q) 7→ ϕ (p, q) =
1

2
p (0) q (1) +

1

2
q (0) p (1) .

We can easily check that ϕ is bilinear, symmetric and ϕ (p, p) = Q (p) .

3.2 Quadratic forms over Rn

First, the analytic expression of q is given by:

q =
n∑
i,j

aij · xixj =
n∑
i=1

n∑
j=1

aij · xixj , (3.2)

where (aij) are real numbers. There are two cases to consider:
Case 1. aij = aji for 1 ≤ i, j ≤ n. The quadratic form q is given by the following matrix

form:

q (x1, x2, ..., xn) =
n∑
i=1

aiix
2
i +

n∑
i 6=j

aij · xixj

=
n∑
i=1

aiix
2
i + 2

n∑
i<j

aij · xixj

=
(
x1 x2 ... xn

)


a11 a12 ... a1n

a12 a22 ... a2n
. . .

a1n a2n ... ann




x1

x2
...
xn

 ,

= xt · A · x,
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Case 2. aij 6= aji for some 1 ≤ i, j ≤ n. Here, we see that

q =
n∑
i=1

aii · x2i +
n∑
i 6=j

aij · xixj =
n∑
i=1

aii · x2i +
n∑
i<j

(aij + aji) · xixj

=
n∑
i=1

aii · x2i + 2
n∑
i<j

aij + aji
2

· xixj

=
n∑
i=1

aii · x2i + 2
n∑
i<j

bij · xixj,

where bij = bji (1 ≤ i, j ≤ n). It follows that

q =
(
x1 x2 ... xn

)


a11
a12+a21

2
... a1n+an1

2
a12+a21

2
a22 ... a2n+an2

2
. . .

a1n+an1

2
a2n+an2

2
... ann




x1

x2
...
xn


= xt · A · x.

In both cases, q can be written in the form q = xt · A · x with A symmetric.

Corollary 3.1. Every symmetric matrix A ∈Mn (R) produces a quadratic form over Rn.

Example 3.3. For q = x21 + 5x1x2 + 7x22, we have

q =
(
x1 x2

)( 1 5
2

5
2

7

)(
x1

x2

)
.

Here E = R2. But, if E = R3 we also have

q =
(
x1 x2 x3

) 1 5
2

0
5
2

7 0

0 0 0


 x1

x2

x3

 .

Similarly, for q = −x21 + 5x1x2 + x1x3 + 2x22 + 2x2x3 − x23, we also have

q =
(
x1 x2 x3

) −1 5
2

1
2

5
2

2 1
1
2

1 −1


 x1

x2

x3

 .

c©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



3.3. QUADRATIC FORMS OVER AN ARBITRARY VECTOR SPACE 33

3.3 Quadratic forms over an arbitrary vector space

LetE be a vector space of dimension n (finite-dimensional space) and let (e) = {e1, e2, ..., en}
be a basis of E. Let f ∈ S2 (E) and let q ∈ Q2 (E) be the corresponding quadratic form.
For each u, v ∈ E we have

u =
n∑
i=1

xiei and v =
n∑
i=1

yiei, where xi, yi ∈ R for 1 ≤ i, j ≤ n.

Then

f (u, v) = f

(
n∑
i=1

xiei,

n∑
i=1

yiei

)
=

n∑
i=1

xiyif (ei, ei) +
n∑
i<j

(xixj + xjxi) f (ei, ej) .

In the matrix form (for E = Rn), we obtain

f (x, y) =
(
x1 x2 ... xn

)


f (e1, e1) f (e1, e2) ... f (e1, en)

f (e2, e1) f (e2, e2) ... f (e2, en)
. . .

f (en, e1) f (en, e2) ... f (en, en)




y1

y2
...
yn


= xt · A · y.

By definition, the following matrix

Mf ((e)) =


f (e1, e1) f (e1, e2) ... f (e1, en)

f (e2, e1) f (e2, e2) ... f (e2, en)
. . .

f (en, e1) f (en, e2) ... f (en, en)

 .

is called the matrix of f in the basis (e) .

Example 3.4 (Homework). Show that the mappings:

q1 : A 7→ q1 (A) = tr
(
AtA

)
q2 : A 7→ q2 (A) = tr

(
A2
)

are quadratic forms, where tr (M) denotes the trace1 of M.

1Recall that the trace of an n by n matrix M = (aij) is defined by tr (M) = a11 + a22 + ...+ ann.
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3.4 Orthogonalization method

Using some properties of symmetric matrices, we prove the following theorem:

Theorem 3.1. Every quadratic form over Rn is diagonalizable. That is, if q = xtAx for some A
symmetric and x ∈ Rn, then q = vtDv for some D diagonal and v ∈ Rn. In other word, we have!
Every quadratic form over Rn is of the form:

q = λ1 · v21 + λ2 · v22 + ...+ λn · v2n, (3.3)

where the scalars λ1, ..., λn and the vectors (v1, v2, ..., vn) ∈ Rn satisfy Avi = λivi. That is, by
(3.3) we get

q =
(
v1 v2 ... vn

)


λ1

λ2
. . .

λn




v1

v2
...
vn

 .

Proof. We know that
q = xt · A · x,

where A is symmetric. By Lemma 2.2, we have

q = xt ·
(
PDP t

)
· x = xtP ·D · P tx =

(
P tx

)t ·D · P tx.

Now, if we put v = P tx, then we obtain q = vt ·D · v. Since

D =


λ1

λ2
. . .

λn


is diagonal and vt =

(
v1 v2 ... vn

)
, the proof of (3.3) finished.

Example 3.5. Let q = 2x21 − 4x1x2 + 5x22.

1) Write q in the form xtAx, where A ∈M2 (R).

2) Using the Orthogonalization method, write q in the form λ1v
2
1 + λ2v

2
2 , where λ1, λ2

are the eigenvalues of A. Solution. 1) In fact, we have

q = 2x21 − 4x1x2 + 5x22 =
(
x1 x2

)( 2 −2

−2 5

)(
x1

x2

)
.
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2) We put A =

(
2 −2

−2 5

)
. After few computation, the eigenpairs of A are:

λ1 = 1→ u1 = (2, 1) ,

λ2 = 6→ u2 = (1,−2) .

We see that ‖u1‖2 = ‖u2‖2 =
√

5. Setting

P =

(
2√
5

1√
5

1√
5
−2√
5

)
and D =

(
1 0

0 6

)
.

Clearly, P is orthogonal (PP t = I2). Moreover, we have

PDP t =

(
2√
5

1√
5

1√
5
−2√
5

)(
1 0

0 6

)(
2√
5

1√
5

1√
5
−2√
5

)
=

(
2 −2

−2 5

)
= A.

It follows that

q = xtAx = xt
(
PDP t

)
x = xtP ·D · P tx =

(
P tx

)t ·D · P tx.

Now, we put v = P tx. That is,

v =

(
2√
5

1√
5

1√
5
−2√
5

)(
x1

x2

)
=

(
2
5

√
5x1 + 1

5

√
5x2

1
5

√
5x1 − 2

5

√
5x2

)
.

Therefore,

q = vt ·D · v = λ1v
2
1 + λ2v

2
2

=

(
2

5

√
5x1 +

1

5

√
5x2

)2

+ 6

(
1

5

√
5x1 −

2

5

√
5x2

)2

= 1 · (2x1 + x2)
2

5
+ 6 · (x1 − 2x2)

2

5
.

Thus, we have written q as in (3.3).

Example 3.6 (Homework 1). Let q = 2x1x2.

1. Write q in the form xtAx, where A ∈M2 (R).

2. Using the Orthogonalization method, write q in the form λ1v
2
1 + λ2v

2
2 , where λ1, λ2

are the eigenvalues of A.
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Example 3.7 (Homework 2). Define the matrix

A =

 2 1 1

1 2 1

1 1 2

 .

Write A as A = P ·D · P t, where P is orthogonal.

3.5 Definitions and results

Let f ∈ S2 (E) (that is, f is a bilinear symmetric form over E).

Definition 3.2. A bilinear form f is called nondegenerate2 if it satisfies the condition:
f (x, y) = 0 for all x ∈ E implies that y = 0.

Thus, f is called nondegenerate if ker f = {0E}. In the case when ker f 6= {0E}, f is
said to be degenerate.

Definition 3.3. A vector v ∈ E is said to be isotropic if f (v, v) = 0. A subset A ⊂ E is
called isotropic if f (v, v) = 0 for any v ∈ E.

We denote by C the set of all isotropic vectors. That is ,

C = {v ∈ E : f (v, v) = 0} . (3.4)

The set C is called the isotropic cone of E. Note that if v ∈ C, then α · v ∈ C. In fact, for
every v ∈ C and α ∈ R we have

q (αv) = f (αv, αv) = α2f (v, v) = 0. (3.5)

Proposition 3.1. If f is skew-symmetric, then every vector is isotropic.

Proof. If f is skew-symmetric, i.e., f (x, y) = −f (y, x) for any x, y ∈ E, then f (x, x) =

−f (x, x) for any x ∈ E, so f (x, x) = 0 for any x ∈ E.

Proposition 3.2. Let f ∈ L2 (E). Then f is alternating if and only if C = E.

3.5.1 Is the isotropic cone a vector space?

In general, the isotropic cone of E is not a vector subspace of E. Thus, we have the fol-
lowing theorem.

2In some references we find the word ”nonsingular” instead of nondegenerate.
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Theorem 3.2. Let f be a nonzero bilinear symmetric form defined on a vector space E. Then

C = ker f
iff⇔ C is a vector subspace of E.

For the proof we need to the following lemma.

Lemma 3.1. Let q be a quadratic form defined over E and let f be its polar form, where E is vector
space over R. Assume that C is a vector subspace of E and there exists an element x0 ∈ C/ ker f .
Then

∀ y ∈ E; if f (x0, y) 6= 0, then y ∈ C,

where C denotes the isotropic cone.

Proof. Let y ∈ E such that f (x0, y) 6= 0. We have

∀ λ ∈ R : q (λx0 + y) = f (λx0 + y, λx0 + y)

= 2λf (x0, y) + q (y) (since q (x0) = 0).

If we let λ0 =
−q (y)

2f (x0, y)
∈ R, then clearly q (λ0x0 + y) = 0, from which we deduce that

λ0x0 + y ∈ C. But, C is given as a subspace containing x0. Thus, we deduce that y belongs
to C, as claimed.

Proof of Theorem 3.2. (⇒) Let q be the quadratic form of f . For every (x, y) ∈ C2 and λ ∈ R,
we get that

• q (x+ y) = q (x) + q (y) + 2f (x, y) = 0. Implies x+ y ∈ C.

• q (λx) = λ2q (x) = 0; i.e., λx ∈ C.

Thus, C is a subspace of E.
(⇐) Suppose that C is a subspace of E. Note that the inclusion ker f ⊂ C is always

true; since

f (x, y) = 0, ∀ y ∈ E ⇒ f (x, x) = 0 (by taking the case y = x).

We would like to prove that if C is a subspace of E, then C ⊂ ker f. Assume by the way of
contradiction that C * ker f . There exists a nonzero vector x0 with x0 ∈ C/ ker f. Define

H = {y ∈ E ; f (x0, y) = 0} .

It suffices to verify that E ⊂ C. In fact, let z ∈ E and y /∈ H . We have

z = y + z − y.
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From Lemma 3.1, we have y ∈ C. We distinguish two cases:
Case 1. If z is in H , then y + z /∈ H , since

f (x0, y + z) = f (x0, y)︸ ︷︷ ︸
6=0

+ f (x0, z)︸ ︷︷ ︸
=0

6= 0

Likewise, from Lemma 3.1, we have y + z ∈ C. In this case, we have

z = y + z︸ ︷︷ ︸
∈C

− y︸︷︷︸
∈C

∈ C (since C is a subspace of E).

Case 2. If z /∈ H , by Lemma 3.1 once again, we have z ∈ C. Thus, E = C, and so f = 0;
since q = 0. But this is a contradiction with our hypothesis that f is a nonzero bilinear
form. Our proof of Theorem 3.2 is finished.

Definition 3.4. Two vectors x and y are said to be orthogonal by f if f (x, y) = 0. We
denote by x ⊥ y.

We deduce from the above definition thatC consists all vectors x such that x ⊥ x. Also,
ker f consists vectors which are orthogonal with all the vectors of E.

Definition 3.5 (Orthogonal set). Let A ⊂ E. The orthogonal3 of A with respect to f is
usually denoted by A⊥ and defined by

A⊥ = {x ∈ E, f (x, y) = 0 for every y ∈ A} . (3.6)

Example 3.8 (Homework). When does A ⊂ A⊥?

Remark 3.1. In the case when a nondegenerate bilinear form on E is not symmetric, there
are two different orthogonals of A :

1. A⊥,R = {x ∈ E, f (x, y) = 0 for every y ∈ A} .

2. A⊥,L = {x ∈ E, f (y, x) = 0 for every y ∈ A} .

Here, we can prove that

(
A⊥,L

)⊥,R
=
(
A⊥,R

)⊥,L
= A.

Definition 3.6 (Kernel of a bilinear symmetric form). Let f ∈ S2 (E). The kernel of f is
defined by

ker f = {x ∈ E, f (x, y) = 0 for every y ∈ E} . (3.7)

3In some references we say ”perp space to A” instead of the orthogonal of A.
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From Definition 3.5, we deduce that ker f = E⊥. Note that x0 ∈ ker f iff f (x, y) = 0 for
every y ∈ E. Similarly, x0 /∈ ker f if and only if there exists y ∈ E such that f (x0, y) 6= 0,
or equivalently f (x0, y) 6= 0 for some y ∈ E.

Theorem 3.3. Let f ∈ S2 (E) and let A,B ⊂ E. Then

1.
(
A⊥
)⊥ ⊃ A.

2. (A ∩B)⊥ ⊃ A⊥ +B⊥.

3. (A ∪B)⊥ ⊃ A⊥ ∩B⊥

Proof. 1. Let v ∈ A. For any u ∈ A⊥, we have f (u, x) = 0 for any x ∈ A. In particular, for
x = v we have f (u, v) = 0. This means that

(
A⊥
)⊥ contains v. As required.

2. Let v = a + b ∈ A⊥ + B⊥, where A⊥ contains a and B⊥ contains b. We will prove
that (A ∩B)⊥ contains v. For every x ∈ A ∩ B we have f (a, x) = f (b, x) = 0 and so
f (a+ b, x) = 0 since f ∈ S2 (E). Thus, f (v, x) = 0.

3. Let v ∈ A⊥ ∩B⊥. For every x ∈ A ∪B we have

• If x ∈ A, then f (v, x) = 0 since v ∈ A⊥.

• If x ∈ B, then f (v, x) = 0 since v ∈ B⊥.

In both cases we have f (v, x) = 0 for any x ∈ A∪B. Thus, v ∈ (A ∪B)⊥, as asked.

Proposition 3.3. Let f be a bilinear form over E. Two subsets A and B of E are called orthogonal
with respect to f if f (x, y) = 0 for any x inA and y inB. The following conditions are equivalent:

1. A and B are orthogonal,

2. A ⊂ B⊥,

3. B ⊂ A⊥.

Proof. We prove (a) ⇒ (b). Let a0 ∈ A. For each vector v ∈ B, f (a0, v) = 0 since A and
B are orthogonal. Hence, a0 ∈ B⊥. Next, (b) ⇒ (c). Let b0 ∈ B. For each vector v ∈ A,
we have v ∈ B⊥, and so f (b0, v) = 0 since b0 ∈ B. Hence, b0 ∈ A⊥. Finally, (c) ⇒ (a). Let
u ∈ A and v ∈ B. Since v ∈ A⊥, then f (u, v) = 0.

Definition 3.7. Let E be a v. space on R and let {e1, e2, ..., en} be a family of n vectors of E.
We have

• {e1, e2, ..., en} is orthogonal by f if f (ei, ej) = 0 for i 6= j.
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• {e1, e2, ..., en} is orthonormal by f if f (ei, ej) = 0 for i 6= j and f (ei, ei) = 1 for
i = 1, 2, ..., n.

Definition 3.8. Let q ∈ Q2 (E) and f its polar form. Then

• q or f is said to be positive if q (x) ≥ 0 for every x ∈ E.

• q or f is said to be definite positive if q (x) > 0 for every x ∈ E − {0E}.

Example 3.9. q = x21 − 4x1x2 + 4x22 is positive. In fact, we see that

q = (x1 − 2x2)
2 ≥ 0 for every (x1, x2) ∈ R2.

But, q = x21 − 2x1x2 + 2x22 is definite positive. In fact, we have

q = (x1 − x2)2 + x22 > 0 for every (x1, x2) ∈ R2 − {(0, 0)} .

Theorem 3.4. Let f ∈ S2 (E). If f is definite positive, then f is nondegenerate.

Proof. Let x ∈ ker f . Then by (3.7), f (x, y) = 0 for every y ∈ E. In the case when y = x,
we get f (x, x) = 0. But, since f is definite positive, f (x, x) = 0 implies x = 0.

Theorem 3.5 (Cauch-Schwarz inequality). Let q ∈ Q2 (E) and f ∈ S2 (E). If q is positive,
then

(f (x, y))2 ≤ q (x) q (y) for every x, y ∈ E.

3.5.2 When is a quadratic form surjective?

Let q ∈ Q2 (E) . Here we ask if any real number is represented by this quadratic form. We
present the following result:

Theorem 3.6. Let q be a quadratic form on a real vector space E. The following three properties
are statements:

1. q is surjective.

2. q is neither positive nor negative.

3. There exists an isotropic vector which is not in the kernel.

Proof. (1)
?⇒ (2). Since q is surjective, then there exists x0 ∈ E (resp. x1 ∈ E) such that{

q (x0) > 0,

q (x1) < 0.
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Then q is not negative (resp. positive).
(2)

?⇒ (3). Let x0 and x1 in E such that q (x0) > 0 and q (x1) < 0. Consider then a vector
of the form λx0 + x1, where λ ∈ R. Let f be the polar form of q, we have

q (λx0 + x1) = f (λx0 + x1, λx0 + x1)

= λ2q (x0) + 2λf (x0, x1) + q (x1) = p (λ) .

Assume that p (λ) = 0. By computation, we find

∆ = f 2 (x0, x1)− q (x0) q (x1) > 0.

Then the equation p (λ) = 0 has two roots. Let λ0 be one of them. Then the vector y0 =

λ0x0 + x1 is by construction, isotropic. We prove by the way of contradiction that y0 is not
in the kernel of f , that is, assume that y0 ∈ ker f. Hence, f (y0, x) = 0 for each x ∈ E . In
particular, for x = x0 and for x = x1 we have{

0 = f (y0, x0) = λ0q (x0) + f (x0, x1) ,

0 = f (y0, x1) = λ0f (x0, x1) + q (x1) .

That is, {
λ20q (x0) + λ0f (x0, x1) = 0,

λ0f (x0, x1) + q (x1) = 0.

We deduce that λ20q (x0) = q (x1) < 0. A contradiction.
(3)

?⇒ (1). Let y0 be an isotropic vector which is not in the kernel of f. There exists
y1 ∈ E such that f (y0, y1) 6= 0. Then for each γ ∈ R, we put

λ =
γ − q (y1)

2f (y0, y1)
∈ R,

from which it follows that

q (λy0 + y1) = q

(
γ − q (y1)

2f (y0, y1)
y0 + y1

)
= f

(
γ − q (y1)

2f (y0, y1)
y0 + y1,

γ − q (y1)

2f (y0, y1)
y0 + y1

)
= γ.

Thus, q is surjective. The proof of Theorem 3.6 is finished.
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3.6 Gauss Decomposition (Silvester’s Theorem)

First, we need to the following definition:

Definition 3.9 (signature of a quadratic form). Assume that

q = +f 2
1 + f 2

2 + ...+ f 2
r − f 2

r+1 − ....− f 2
r+s, (3.8)

where f1, f2, ..., fr+s are linearly independent forms over Rn. The couple (r, s) is called the
signature of q.

Recall that if fi (x1, x2, ..., xn) = a
(i)
1 x1 + a

(i)
2 x2 + ...+ a

(i)
n xn with a(i)j ∈ R for 1 ≤ i ≤ r+ s

and 1 ≤ j ≤ n, then f1, f2, ..., fr+s are linearly independent if and only if∣∣∣∣∣∣∣∣∣∣
a
(1)
1 a

(2)
1 . . . a

(r+s)
1

a
(1)
2 a

(2)
1 . . . a

(r+s)
1

...
... . . .

...
a
(1)
n a

(2)
1 . . . a

(r+s)
1

∣∣∣∣∣∣∣∣∣∣
6= 0.

In the rest of this section we show how to write any quadratic form over Rn as in (3.8).
To make this, we use the well-known identity:

(a+ b+ c+ ...)2 = a2 + b2 + c2 + 2ab+ 2ac+ ...+ 2bc+ 2bd+ .... (3.9)

Let q (x1, x2, ..., xn) =
∑n

i,j aij · xixj be a quadratic form over Rn, where aij = aji for
1 ≤ i, j ≤ n. We distinguish two cases:

Case 1. When a11 6= 0, we put
x1 = y1 −

1

a11
(a12y2 + ...+ a1nyn)

x2 = y2
...
xn = yn

(3.10)

It follows that
q (x1, x2, ..., xn) = a11y

2
1 + q′ (y2, y3, ..., yn) ,

where q′ is also a quadratic form; but over Rn−1. Then we repeat the same argument with
q′.

c©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



3.6. GAUSS DECOMPOSITION (SILVESTER’S THEOREM) 43

Case 2. When a11 = 0, but a12 6= 0. Here, we put

x1 = y1 + y2

x2 = y1 − y2
x3 = y3
...
xn = yn.

(3.11)

It follows that

q (x1, x2, ..., xn) =
n∑
i,j

bij · yiyj ,

where b11 6= 0. This is the first case (we have transformed q so that we can apply the first
case). By this method we can write q in the following form:

q = ±f 2
1 ± f 2

2 ± ...± f 2
m,

where m ≤ n and f1, f2, ..., fm are linearly independent forms over Rn.

Example 3.10. Using Gauss’ Method, diagonalize the following two quadratic forms and
deduce their signatures :

• q1 = x21 + x22 + 2x23 − 4x1x2 + 6x2x3

• q2 = 2x1x2 + 2x2x3 + 2x1x3.

Solution: For q1, since a11 = 1 it follows from (3.10) that
x1 = y1 + 2y2

x2 = y2

x3 = y3.

This implies

q1 = x21 + x22 + 2x23 − 4x1x2 + 6x2x3

= (y1 + 2y2)
2 + y22 + 2y23 − 4 (y1 + 2y2) y2 + 6y2y3

= y21 − 3y22 + 6y2y3 + 2y23

= y21 + q′1 (y2, y3) .

Likewise by (3.10), let us take {
y2 = z2 + z3

y3 = z3.
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It follows that

q′1 = −3y22 + 6y2y3 + 2y23

= −3 (z2 + z3)
2 + 6 (z2 + z3) z3 + 2z23

= −3z22 + 5z23 .

Finally, we obtain

q1 = (x1 − 2x2)
2 + 5x23 − 3 (x2 − x3)2 = f 2

1 + f 2
2 − f 2

3 ,

where f1, f2 and f3 are linearly independent forms over R3 since∣∣∣∣∣∣∣
1 −2 0

0 0 5

0 1 −1

∣∣∣∣∣∣∣ = −5 6= 0.

Thus, the signature of q1 is (2, 1). For the quadratic form q2, by (3.11) we put
x1 = y1 + y2

x2 = y1 − y2
x3 = y3.

We obtain

q2 = 2 (y1 + y2) (y1 − y2) + 2 (y1 − y2) y3 + 2x1y3

= 2y21 + 4y3y1 − 2y22

= q′2.

Setting once again 
y1 = z1 − z3
y2 = z2

y3 = z3.

It follows that

q′2 = 2y21 + 4y3y1 − 2y22

= 2 (z1 − z3)2 + 4z3 (z1 − z3)− 2z22

= 2z21 − 2z22 − 2z23 .
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Hence,

q2 = 2 (y1 + y3)
2 − 2y22 − 2y23

= 2

(
x1 + x2

2
+ x3

)2

− 2

(
x1 − x2

2

)2

− 2x23

= f 2
1 − f 2

2 − f 2
3 ,

where f1, f2 and f3 are linearly independent forms over R3 ; since∣∣∣∣∣∣∣
1
2

1
2

1

1 −1 0

0 0 −2

∣∣∣∣∣∣∣ = 2 6= 0

The signature of q2 is (1, 2) and the rank is 3.

Example 3.11. Consider the quadratic form q = x1x3 + x2x3, where E = R3. Find the
signature of q.

Solution: We put 
x1 = y1 + y2,

x2 = y1 − y2,
x3 = y3.

We obtain
q = (y1 + y2) y3 + (y1 − y2) y3 = 2y1y3

We put once again {
y1 = z1 + z2

y3 = z1 − z2

Then

q = 2 (z1 + z2) (z1 − z2) = 2z21 − 2z22 (the signature is (1, 1) )

= 2

(
y1 + y3

2

)2

− 2

(
y1 − y3

2

)2

= 2

[ x1+x2
2

+ x3

2

]2
− 2

[ x1+x2
2
− x3

2

]2
.

Remark 3.2. The inner product is a bilinear form, symmetric and definite positive. For each
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(x, y) ∈ Rn × Rn, we have

〈x, y〉 =
(
x1 x2 . . . xn

)


y1

y2
...
yn

 = xty.

Corollary 3.2. Let A ∈Mn (R). Then there exists a symmetric matrix B ∈ Sn (R) such that

xtAx = xtBx for every x ∈ Rn.

Proof. Since xtAx = a ∈ R, for every x ∈ Rn we have

xtAx =
(
xtAx

)t
= xtAtx.

It follows that
xtAx =

1

2
xtAx+

1

2
xtAtx = xt

(
A+ At

2

)
x.

Note that the matrix B =
A+ At

2
is always symmetric.

Proposition 3.4. Let A ∈ Mn (R) be a symmetric and let (α, x), (β, y) be two eigenpairs of A
with α 6= β. Then x and y are orthogonal, i.e., x ⊥ y. Or, equivalently, 〈x, y〉 = 0.

Proof. Indeed, we have

α 〈x, y〉 = 〈αx, y〉 = 〈Ax, y〉 =
〈
x,Aty

〉
= 〈x,Ay〉 = 〈x, βy〉 = β 〈x, y〉 ,

and since α 6= β, it follows that 〈x, y〉 = 0.

Example 3.12 (Homework). 1. Consider the equation

ax2 + 2hxy + by2 = 0. (3.12)

Write (3.12) in the form vtAv = 0, where A ∈M2 (R) and v =
(
x y

)t
.

2. Write the equation λ1x21 + λ2x
2
2 = 0 in the matrix form.

3. Let A ∈Mn (R). We ask if vtAv = 0 ∀ v ∈ Rn, implies A = 0 ?

Ans. No, take the matrix A =

(
0 −1

1 0

)
.
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Definition 3.10. Let E be a real vector space equipped with an inner product 〈., .〉. The
couple (E, 〈., .〉) is said to be a real pre-Hilbert space. A real pre-Hilbert space of finite
dimension is said to be Euclidian space.

Let (E, 〈., .〉) be a pre-Hilbert space. The related norm is defined by

∀ x ∈ E : ‖x‖ =
√
〈x, x〉. (3.13)

Note that (3.13) a well-known identity which is used in (2.3).

3.7 Proposed problems (quadratic forms)

Exercise 1. Determine in the canonical basis of R3 the matrix of the symmetric bilinear
form f such that for v1 = (1, 2, 1) , v2 = (−1, 2, 0), v3 = (1, 0, 1), one has f (v1, v2) = 0,
f (v2, v3) = 4, f (v1, v3) = −1, f (v1, v1) = 5, f (v2, v2) = 1, f (v3, v3) = 0. Find the quadratic
form associated with f .

Exercise 2. Let f be a symmetric bilinear form onE and q the quadratic form associated
with f . Show that for all x, y in E, one has

f (x, y) =
1

4
(q (x+ y)− q (x− y)) . (3.14)

Consider the mapping q : E → K such that for all x ∈ E, and λ ∈ K we have q (λx) =

λ2q (x) . The map f : E × E → K given by (3.14) is bilinear. Show that q is the quadratic
form associated with f .

Exercise 3. In the vector space R2 define the quadratic form:

q (x) = 33x21 − 28x1x2 + 6x22,

where
(
x1 x2

)t
are the coordinates of x in the canonical basis {e1, e2} of R2. Determine

the expression of q when we take as basis {e′1, e′2} = {e1 + 2e2, 2e1 + 5e2} . Write the polar
form of q in both bases.

Exercise 4. Let f be a symmetric bilinear form on E and let A and B be two parts of E.
Prove that A ⊂

(
A⊥
)⊥ and if A ⊂ B, then B⊥ ⊂ A⊥.

In the vector space R3 related to its canonical base the symmetrical bilinear form de-
fined by

f (x, y) = x1y1 + x2y2,

where
(
x1 x2 x3

)t
and

(
y1 y2 y3

)t
are the coordinates of x and y. Find e⊥1 and(

e⊥1
)⊥
.
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What can we deduce from this?
Exercise 5. Let f be a symmetric bilinear form on E and let F and G be two subspaces

of E. Show that

(F +G)⊥ = (F ∪G)⊥ = F⊥ ∩G⊥ and F⊥ +G⊥ ⊂ (F ∩G)⊥ .

In the vector space R2 related to its canonical base the symmetric bilinear form defined
by

f (x, y) = x1y1,

where
(
x1 x2

)t
and

(
y1 y2

)t
are the coordinates of x and y. Calculate (V ect {e1})⊥,

(V ect {e1 + e2})⊥, (V ect {e1})⊥+ (V ect {e1 + e2})⊥and (V ect {e1} ∩ V ect {e1 + e2})⊥. What
can we deduce from this?

Exercise 6. In the vector space R3related to its canonical base the quadratic form de-
fined by

q (x) = x21 + x22 + x23 − 4 (x1x2 + x1x3 + x2x3) ,

where
(
x1 x2 x3

)t
are the coordinates of x. Without using the Gauss method, find a

basis of R3 which is orthogonal by f , where f is the polar form of q.
Exercise 7. In the vector space E = R3 define to its canonical basis the quadratic form

q (x) = x21 + x22 + x23 − (x1x2 + x1x3 + x2x3) ,

where
(
x1 x2 x3

)t
are the coordinates of x,and let f be the polar form of q.

1. Decompose q into sum of squares using the Gaussian method.

2. Find a base of E which is orthogonal to f .

3. Find the matrix A and B of f respectively in the canonical and orthogonal basis of
E.

4. Verify by calculation that P tAP = B, where P is the passage matrix from the canon-
ical basis to the orthogonal basis.

Exercise 8. Let A ∈Mn (C) . Show that if A is symmetric, then there exists B ∈Mn (C)

such that A = Bt ·B.
Exercise 9. Let (e) = {e1, e2, e3} a basis of a real vector space E of dimension 3 and let

q (x) = x21 + 4x22 + x23 + 4x1x2 − 2x1x3 − 12x2x3,
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be a quadratic form over E, where x = x1e1 + x2e2 + x3e is any vector of E. Reduce q (x)

in sum of squares using the Gaussian method and deduce its rank and signature.
Exercise 10. Let (e) = {e1, e2, e3} a basis of a real vector space E of dimension 3. Define

q (x) = x21 + 4x22 + x23 + 4x1x2 − 2x1x3 − 12x2x3,

which is a quadratic form on E, where x = x1e1 + x2e2 + x3e is any vector of E. Construct,
without using the Gauss method, a basis (e′) of E which is orthogonal with respect to q.

Exercise 11. Let (e) = {e1, e2, e3} a basis of a real vector space E of dimension 3. Define
the quadratic form on E,

q (x) = x21 + ax22 + 5x23 + 2x1x2 − 6x1x3 + 2x2x3,

where a ∈ R and x = x1e1 + x2e2 + x3e3 is any vector of E.

1. Give the polar form f of q as well as the matrix A associated with q relative to the
base (e).

2. Reduce q to sum of squares using the Gaussian method.

3. Construct, without using the Gauss method, a basis (e′) of E which is orthogonal for
f .

4. Give the matrix B associated with f in the basis (e′) .

5. Deduce the rank and signature of q.

Exercise 12. Let (e) = {e1, e2, e3} be a basis of a real vector space E of dimension 3.
Define

q (x) = 4x21 + 25x22 + ax23 − 12x1x2 + 4x1x3 + 2x2x3

a quadratic form on E, where a is a real number and x = x1e1 + x2e2 + x3e3 is any vector
of E, and let f be the polar form of q.

1. Give the matrix A associated with f relative to the base (e).

2. Reduce q to sum of squares using the Gaussian method.

3. Deduce the rank and signature of q.

4. Study if f is degenerate, positive, definite.

5. Construct, without using the Gauss method, a basis (e′) of E which is orthogonal by
f .
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6. Give the quadratic form associated with f in the basis (e′).

Exercise 13. Let q be a real quadratic form of signature (s, t). Show that

1. q is non-degenerate if and only if s+ t = n,

2. q is positive if and only if t = 0,

3. q is negative if and only if s = 0,

4. q is definite positive if and only if s = n,

5. q is definite negative if and only if t = n.

Exercise 14. Show that q1 : A 7−→ tr (AtA) and q2 : A 7−→ tr (A2) are quadratic forms.
Exercise 15. Find the signature of the quadratic form related to the polar form

f : Rn × Rn → R

(x, y) 7→ (x1 + x2 + . . .+ xn) (y1 + y2 + . . .+ yn)− (x1y1 + x2y2 + . . .+ xnyn) .
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CHAPTER 4

INTRODUCTION TO HERMITIAN SPACE

T hroughout this chapter, the field used here is the field of complex numbers and E

is a vector space over C. For example, E = Cn with n ≥ 2, Cn [x],Mn (C), and so
on. The basic goal of this chapter is to define quadratic forms over a complex pre-Hilbert
space of finite dimension, namely, hermitian space.

4.1 Sesquilinear forms and hermitian quadratic forms

In this section, we deal with a sesquilinear form defined over a complex vector space E,
which is a mapping from E × E to C, linear according to one of the variables and semi-
linear with respect to the other variable.

4.1.1 Definitions and examples

Definition 4.1. Let E be a vector space on C. A semi-linear form is a mapping f from E

to C such that for every (u, v) ∈ E2 and α ∈ C, one has

1. f (u+ v) = f (u) + f (v) ,

2. f (αv) = αf (v).

Example 4.1. The mapping

f : C→ C

z 7→ f (z) = z

is a semi-linear form over C. In fact, we see that

• For every z1, z2 ∈ C,

f (z1 + z2) = z1 + z2 = z1 + z2 = f (z1) + f (z2) .
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• For every z ∈ C and α ∈ K = C we have

f (αv) = αz = α · z = αf (z) .

Definition 4.2. A sesquilinear form is a mapping f fromE2 to C such that f is linear from
the left and semi-linear from the right. Thai is, for every (x, x′, y, y′) ∈ E4 and λ ∈ C, one
has

1. f (λx+ x′, y) = λf (x, y) + f (x′, y) ,

2. f (x, λy + y′) = λf (x, y) + f (x, y′)

Example 4.2. Let f : C× C→ C, (z1, z2) 7→ z1 · z2 and we prove that f is a sesquilinear
form. In fact, for every (z1, z2, z

′
1, z
′
2) ∈ C4 and λ ∈ C, we have

f (λz1 + z2, z
′
1) = (λz1 + z2) · z′1 = λz1z′1 + z2z′1

= λf (z1, z
′
1) + f (z2, z

′
1) .

That is, f is linear from the left.

f (z1, λz
′
1 + z′2) = z1 · (λz′1 + z)′2 = z1 ·

(
λz′1 + z′2

)
= λ · z1z′1 + z1z′2 = λf (z1, z

′
1) + f (z1, z

′
2) .

That is, f is semi-linear from the right.

As we have done above, we deduce:

Theorem 4.1. Let B and B′ be two bases of E. Let P be the passage matrix from B to B′ and
let f : E × E → R be a sesquilinear form over E. If A = Mf (B) and A′ = Mf (B′), then
A′ = P t · A · P .

Definition 4.3. A hermitian sesquilinear form is a sesquilinear form f over E satisfying

f (x, y) = f (y, x), for each (x, y) ∈ E2.

Example 4.3. The sesquilinear form defined over C by

f : C× C→ C

(z1, z2) 7→ z1z2

is hermitian. In fact, for each (z1, z2) ∈ C2, one has

f (z1, z2) = z1z2 = z1z2 = z1z2 = z2z1 = f (z2, z1).
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That is, f is hermitian.

Theorem 4.2. Let A be a hermitian matrix, and let f : Cn × Cn → C, f (x, y) 7→ xtAy. Then f
is a hermitian sesquilinear form over Cn.

Proof. We use the same argument as in the proof of Theorem 2.1.

Theorem 4.3. Let f be a sesquilinear form over E. Then f is hermitian if and only if f (x, x) ∈ R
for every x ∈ E.

Proof. Assume that f is Hermitian. Then by definition, f (x, y) = f (y, x) for every x, y ∈
E. In particular, when x = y we have f (x, x) = f (x, x) for every x ∈ E. Thus, f (x, x) ∈ R
for every x ∈ E.

Conversely. Assume that f (x, x) ∈ R for every x ∈ E. Then for every x, y ∈ E we also
have {

f (x+ y, x+ y) ∈ R,
f (ix+ y, ix+ y) ∈ R.

It follows that 
f (x, x)︸ ︷︷ ︸
∈R

+ f (y, y)︸ ︷︷ ︸
∈R

+f (x, y) + f (y, x) ∈ R,

f (x, x)︸ ︷︷ ︸
∈R

+ f (y, y)︸ ︷︷ ︸
∈R

+i [f (x, y)− f (y, x)] ∈ R.

We put {
α = f (x, y) + f (y, x) ∈ R,
β = i [f (x, y)− f (y, x)] ∈ R.

It is clear that
α + iβ

2
= f (y, x) and

α− iβ
2

= f (x, y) ,

and so f (y, x) = f (x, y). This completes the proof.

4.1.2 Hermitian matrices

At first, define hermitian matrices:

Definition 4.4. Let A = (aij)1≤i,j≤n ∈ Mn (C). The matrix (aij)1≤i,j≤n is called conjugate
of A, denoted by A. The transpose conjugate matrix of A is called the adjoint of A, and
denoted by A∗.

Note that for any matrix A ∈ Mn (C), we have A∗ = At =
(
A
)t
. That is, the conjugate

transpose is the same with the transpose conjugate.
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Definition 4.5. A matrix A ∈ Mn (C) is said to be hermitian if A∗ = A. That is, if At = A.
Thus,

A is hermitian def⇔ aij = aji for 1 ≤ i, j ≤ n.

Example 4.4. The matrices

A =

(
3 2 + i

2− i 7

)
, B =

 1 1 + i 2 + 3i

1− i −2 −i
2− 3i i 0


are hermitian.

We also state the following elementary properties:

1. I∗ = I,

2. (A∗)∗ = A,

3. (A+B)∗ = A∗ +B∗,

4. (αA)∗ = α · A∗,

5. (AB)∗ = B∗A∗.

Remark 4.1. Let A ∈Mn (C). We can easily prove that the matrices A+A∗, AA∗ and A∗A
are hermitian.

Proposition 4.1. The diagonal entries of a hermitian matrix A are real numbers.

Proof. Let A = (aij)1≤i,j≤n ∈ Mn(C) be a hermitian matrix. Since aij = aji for each
1 ≤ i, j ≤ n, then

aii = aii, ∀ i = 1, 2, ..., n.

It follows that aii ∈ R for i = 1, 2, ..., n.

Proposition 4.2. Let A and B be two hermitian matrices. Then AB is hermitian if and only if
AB = BA.

Proof. We see that (AB)∗ = AB iff B∗A∗ = AB iff BA = AB, as desired.

Definition 4.6. Let A ∈Mn(C).

1. A is said to be skew-hermitian if A∗ = −A. That is, if At = −A.

Proposition 4.3. Let A ∈Mn(C). The diagonal entries of a skew-hermitian matrix A are zero or
imaginary pure.
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Proof. Let A = (aij)1≤i,j≤n ∈ Mn(C) be a skew-hermitian matrix. Since −aij = −aji for
each 1 ≤ i, j ≤ n, then

−aii = aii, ∀ i = 1, 2, ..., n.

It follows that Re (aii) = 0, so aii = 0 or αi · i with αi ∈ R∗ for i = 1, 2, ..., n.

Proposition 4.4. Let A ∈Mn(C). Then A is skew-hermitian if and only if iA is hermitian.

Proof. We have
(iA)∗ = iA⇔ −iA∗ = iA⇔ A∗ = −A.

The proof is finished.

Example 4.5 (Homework). 1. Find the complex number b for which the matrix

A =

 0 b 0

b 0 1− b
0 b− 1 0

 , b ∈ C

is hermitian.
2. Let

A =

 0 x y

−x 0 z

−y −z 0

 , x, y, z ∈ C

Find the complex numbers x, y, z such that (i) A∗ = A, (ii) A∗ = −A, (i) A is unitary.

4.2 Hermitian quadratic forms over Cn

Let E be a v. space over C. Recall that a map q : E → C is said to be hermitian quadratic
form if there exists a hermitian sesquilinear form f : E × E → R such that f (x, x) = q (x)

for any x ∈ E.

Remark 4.2. Every hermitian matrix A ∈ Mn (C) produces a hermitian quadratic form
over Cn.

Next, the analytic expression of q is given by:

q =
n∑
i,j

aij · xixj =
n∑
i=1

n∑
j=1

aij · xixj .
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Thus, every hermitian quadratic form over Cn is given by the following matrix form1.

q (x1, x2, ..., xn) =
(
x1 x2 ... xn

)


a11 a12 ... a1n

a12 a22 ... a2n
. . .

a1n a2n ... ann




x1

x2
...
xn


= xt · A · x,

where aij = aji for 1 ≤ i, j ≤ n.

Definition 4.7. 1. A hermitian sesquilinear form f : E × E → C is said to be positive if
for any v ∈ E,

f (v, v) ∈ R+.

2. A hermitian sesquilinear form f : E × E → C is said to be definite positive if for any
v ∈ E,

f (v, v) ∈ R∗+.

Theorem 4.4. Let A ∈Mn(C). Then A is hermitian definite positive iff there exists an invertible
matrix M such that

A = M t ·M . (4.1)

Definition 4.8. Let E be a vector space over C. An inner product over E is a sesquilinear
form, hermitian and definite positive.

Thus, a vector space E over C equipped with a sesquilinaer form which is hermitian
and definite positive is called pre-Hilbert space. If a pre-Hilbert space E has finite dimen-
sion, it is called Euclidean space.

4.3 Gauss decomposition for hermitian forms

Here, we have not a direct method as in Section 3.6; but we usually use the following
well-known facts:

• For every z ∈ C: z · z = |z|2.

• For every z ∈ C: z + z = 2Re (z).

• For every z1, z2 ∈ C:

z1 · z2 + z1 · z2 =
1

2
|z1 + z2|2 −

1

2
|z1 − z2|2 .

1In some references xt · A · x is the matrix representation of a quadratic hermitian form over Cn, where
xt ·A · x = xt ·A · x.
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Example 4.6. Diagonalize the following hermitian quadratic forms:

1. q1 = ix1x2 − ix2x1, E = C2.

2. q2 = x1x1 + ix1x2 − ix2x1 + x2x2, E = C2.

3. q3 = x1x1 + a12x1x2 + a21x2x1 + a22x2x2.

4. Deduce the signature of the quadratic form given by:

q′2 = αx1x1 + ix1x2 − ix2x1 + x2x2, α ∈ R.

Solution. We can write

q1 = ix1x2 − ix2x1
= x1 (ix2) + x1 (−ix2)

= x1
(
−ix2

)
+ x1 (−ix2) (which is of the form z1z2 + z1z2)

=
1

2
|x1 − ix2|2 −

1

2
|x1 + ix2|2 (since z1z2 + z1z2 =

1

2
|z1 + z2|2 −

1

2
|z1 − z2|2 )

= |f1|2 − |f2|2 ,

where f1 et f2 are linearly independent forms over C2, since∣∣∣∣∣ 1 −i
1 i

∣∣∣∣∣ 6= 0.

The signature of q1 is (1, 1) . Likewise, we have

q2 = x1x1 + ix1x2 − ix2x1 + x2x2

= (x1 − ix2) (x1 + ix2)

= (x1 − ix2) (x1 − ix2)

= |x1 − ix2|2

= |f1|2 .

The signature of q2 is (1, 0) .

For the quadratic form q′2 = αx1x1 + ix1x2 − ix2x1 + x2x2, α ∈ R. We see that

q′2 = (α− 1)x1x1 + q2 = (α− 1) |x1|2 + |x1 − ix2|2 .
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We deduce that 
α = 1, the signature is (1, 0) .

α > 1, the signature is (2, 0) .

α < 1, the signature is (1, 1) .

Finally, we have

q3 = x1x1 + a12x1x2 + a21x2x1 + a22x2x2

= (x1 + a21x2) (x1 + a12x2) + (a22 − a12a21)x2x2
= (x1 + a21x2) (x1 + a21x2) + (a22 − a12a21)x2x2
= |x1 + a21x2|2 + (a22 − a12a21)︸ ︷︷ ︸

∈R

|x2|2 .

Example 4.7. Let E = C, and let q be the Hermitian quadratic form over E given by

q = a12x1x2 + a13x1x3 + a12x2x1 + a23x2x3 + a13x3x1 + a23x3x2.

Give the diagonal form of Gauss.
Solution. We have

q = a12x1x2 + a13x1x3 + a12x2x1 + a23x2x3 + a13x3x1 + a23x3x2

= x1 (a12x2 + a13x3) + x1 (a12x2 + a13x3) + a23x2x3 + a23x3x2

= x1 (a12x2 + a13x3) + a23x2x3 + x1 (a12x2 + a13x3) + a23x3x2

= x1 (a12x2 + a13x3) +
a23
a13

x2 (a12x2 + a13x3)−
a23a12
a13

x2x2 +

x1 (a12x2 + a13x3) +
a23
a13

x2 (a12x2 + a13x3)−
a23a12
a13

x2x2︸ ︷︷ ︸
=

(
x1 +

a23
a13

x2

)
(a12x2 + a13x3) +

(
x1 +

a23
a13

x2

)
(a12x2 + a13x3)−

(
a23a12
a13

+
a23a12
a13

)
x2x2

=
1

2

∣∣∣∣x1 +

(
a23
a13

+ a12

)
x2 + a13x3

∣∣∣∣2 − 1

2

∣∣∣∣x1 +

(
a23
a13
− a12

)
x2 − a13x3

∣∣∣∣2 − 2Re

(
a23a12
a13

)
|x2|2 .

Example 4.8. Diagonalize the Hermitian quadratic form given by its matrix:

Mq =

 0 1− i 0

1 + i 0 i

0 −i 0

 .

Here, Mq is the matrix of the hermitian quadratic form q with respect to the standard basis
of C3.
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Solution. We have

q = (1− i)x1x2 + (1 + i)x2x1 + ix2x3 − ix3x2
= x2 [(1 + i)x1 + ix3] + x2 [(1− i)x1 − ix3]

= x2[(1− i)x1 − ix3] + x2 [(1− i)x1 − ix3] (which is of the form z1z2 + z1z2)

=
1

2
|x2 + (1− i)x1 − ix3|2 −

1

2
|x2 − (1− i)x1 + ix3|2

= |f1|2 − |f2|2 .

The signature is (1, 1) .
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CHAPTER 5

SPECTRAL DECOMPOSITION OF

SELF-ADJOINT LINEAR MAPPINGS

I n this chapter we present a sufficiently and necessary condition for a linear form to
be normal in a complex pre-Hilbert space of finite dimension. But first, define the

inner product on a complex vector space and then we state, without proof, the spectral
decomposition theorem of self-adjoint linear mappings.

5.1 Scalar Product over a complex vector space

Definition 5.1. Let E be complex v. space. The inner product of E (over E) is a function
〈., .〉 defined by

〈., .〉 : E × E → C

(x, y) 7→ 〈x, y〉

satisfying the following properties:

1. For all x ∈ E, 〈x, x〉 ∈ R+ and 〈x, x〉 = 0⇔ x = 0.

2. For all x, y ∈ E, we have 〈x, y〉 = 〈y, x〉.

3. For all x ∈ E and scalar α ∈ R, we have 〈λx, y〉 = λ 〈x, y〉

4. For all x, y, z ∈ E, we have 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 .

We say, the scalar product between x and y, or the inner product between x and y.

Definition 5.2. Let E be a complex vector space equipped with an inner product 〈., .〉. The
couple (E, 〈., .〉) is said to be a complex pre-Hilbert space. A complex pre-Hilbert space
of finite dimension is said to be hermitian space.
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Example 5.1. Define over Cn the scalar product 〈., .〉 by

∀ x, y ∈ Cn : 〈x, y〉 =
n∑
i=1

xiyi. (5.1)

We can write (5.1) as1: 〈x, y〉 = xt ·y. In particular, for x =
(
x1 x2

)t
and y =

(
y1 y2

)t
,

we have
〈x, y〉 = 〈(x1, x2) , (y1, y2)〉 = x1y1 + x2y2.

We will accept the following lemma without proof.

Lemma 5.1. For every x, y ∈ Cn :

|〈x, y〉| ≤ ‖x‖ · ‖y‖ . (5.2)

5.2 Spectral decomposition of self-adjoint linear mapping

At first, define unitary and normal matrices or linear mapping.

Definition 5.3. Let A ∈Mn(C).

1. A is said to be unitary if A∗ = A−1.

2. A is said to be normal if A∗A = AA∗. This means thatA commutes with its transpose
conjugate.

Example 5.2. We can check that the matrix

U =

[
0 −i
i 0

]

is unitary; however for the matrix:

N =

[
−i −i
−i i

]

we can easily check that N∗N = NN∗, so N is normal.

Proposition 5.1. Every n by n complex invertible matrix A can be represented as A = U · T ,
where U is unitary and T = (tij) is upper triangular with tij ≥ 0.

Proof. The proof is similar to the real case.

1Sometimes we use the notation tx · y instead of xt · y.
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Lemma 5.2. Every hermitian matrix A ∈Mn (R) can be represented in the form:

A = P t ·D · P , (5.3)

where P is orthogonal and D is diagonal whose diagonal entries (∈ R) are the eigenvalues of A.

From the above lemma, we deduce that every hermitian definite positive matrix A can
written as A = M t ·M , where M =

√
DP is invertible.

Definition 5.4. Let f ∈ L (E), the adjoint (or the hermitian conjugate) of f is the mapping
f ∗ ∈ E∗ satisfying

〈f (u) , v〉 = 〈u, f ∗ (v)〉 ,

for any u, v ∈ E. Further, f is said to be self-adjoint or hermitian if f = f ∗.

Theorem 5.1. Let A ∈ Mn(C) be a hermitian matrix (resp. self-adjoint mapping). Then xtAx ∈
R for each x ∈ Cn.

Proof. We have

xtAx =
(
xtAx

)t (since xtAx = a ∈ C)

= (x)tAtx (known result)

= (x)tA∗x

= xtA∗x

= xtAx (since A∗ = A).

This implies that xtAx = xtAx . Hence, xtAx ∈ R.

Second proof. We know that

xtAx =
(
x1 x2 ... xn

)


a11 a12 ... a1n

a12 a22 ... a2n
. . .

a1n a2n ... ann




x1

x2
...
xn

 ,

where aii ∈ R for 1 ≤ i ≤ n and aij = aji for i 6= j because the matrix A is Hermitian.
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Therefore,

xtAx =
∑
i,j

aijxixj

=
n∑
i=1

aiixixi +
∑
i 6=j

aijxixj

=
n∑
i=1

aii |xi|2︸ ︷︷ ︸
∈R

+
∑
i<j

(aijxixj + ajixjxi)

=
n∑
i=1

aii |xi|2︸ ︷︷ ︸
∈R

+
∑
i<j

(
aijxixj + aijxixj

)

=
n∑
i=1

aii |xi|2︸ ︷︷ ︸
∈R

+ 2Re
∑
i<j

aijxixj︸ ︷︷ ︸
∈R

The proof is finished.

Remark 5.1. By a second method we prove that the eigenvalues of a hermitian matrix
A (resp. self-adjoint mapping) are real numbers. Let fA be the corresponding hermitian
sesquilinear form of A and let (λ, x) be an eigenpair of A. Applying Theorem 5.1, we
obtain

fA (x, x)︸ ︷︷ ︸
∈R

= (x)tAx = (x)tAx = (x)t λx = λ (x)t x

= λ ·
n∑
i=1

|xi|2︸ ︷︷ ︸
∈R

∈ R.

Hence, λ ∈ R.

Theorem 5.2. The eigenvalues of a hermitian matrix (resp. self-adjoint mapping) are real num-
bers.

Proof. Let (λ, x) be an eigenpair of a hermitian matrix A (note that x 6= 0)2. We can write

λ 〈x, x〉 = 〈λx, x〉 = 〈Ax, x〉 = (Ax)t x = xtAtx

= xt
((
A
)t)t

x (since
(
A
)t

= A) = xtAx

= xtAx = 〈x,Ax〉 = 〈x, λx〉 = λ 〈x, x〉 .
2The eigenvectors are always nonzero.
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Thus, λ = λ and so λ ∈ R.

Corollary 5.1. The eigenvalues of a real skew-symmetric matrix are imaginary pure.

Proof. First Method. It suffices to show that iA is hermitian. In fact, (iA)∗ =
(

(iA)
)t

= −i ·
At = −i (−A) = iA. By Theorem 5.2, the eigenvalues of iA are real, and so the eigenvalues
of A are imaginary pure.

Second Method. Proceeding along the same manner as in the proof of Theorem 5.1.
Let (λ, x) be an eigenpair of A. Then

λ 〈x, x〉 = 〈λx, x〉 = 〈Ax, x〉 = (Ax)t x = xtAtx

= xt
(
−A
)
x (since A = A and At = −A)

= −xt · Ax = −〈x,Ax〉 = −〈x, λx〉 = −λ 〈x, x〉 .

Therefore,
(
λ+ λ

)
〈x, x〉 = 0. Since x 6= 0, we deduce that 2Re (λ) = 0 and hence λ is

imaginary pure. The proof is finished.

Theorem 5.3 (Spectral decomposition of self-adjoint linear mapping). Let E be a pre-
Hilbert space over C with dimE = n and let f ∈ L (E). Then f is normal iff there exists an
orthonormal basis for E formed by the eigenvectors of f .

Proof. For the proof, one can see [1].

We finish this subsection by a simple comparison between linear algebra and sesquilin-
ear algebra.

Linear Algebra Sesquilinear Algebra
Linear Semi-linear

f is bilinear f is sesquilinear

f is bilinear symmetric f is sesquilinear hermitian

q is a quadratic form q is a hermitian quadratic form

Euclidian space Hermitian space

Symmetric matrix Hermitian matrix

Anti-symmetric (skew-symmetric) matrix Anti-hermitian (skew-hermitian) matrix

Orthogonal matrix Unitary matrix

Pre-Hilbert space over R Complex Pre-Hilbert space

... ...
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5.3 Proposed problems

Exercise 1. Let f be a sesquilinear form on E. Show that f is hermitian sesquilinear form
on E if, and only if, for every x in E, f (x, x) is real.

Exercise 2. Show that

i. The set of all sesquilinear forms over E, equipped with the usual sum of functions
and multiplication by a scalar, is a vector space over C.

ii. The set of all hermitian forms over E, equipped with the usual sum of functions and
multiplication by a scalar, is a vector space over C.

Exercise 3. Let f be a hermitian sesquilinear form on E. Two parts A and B of E are
said to be orthogonal with respect to f if f (x, y) = 0 for any x in A and y in B. Prove that
the following conditions are equivalent:

(i) A and B are orthogonal.
(ii) A ⊂ B⊥

(iii) B ⊂ A⊥.

Exercise 4. Let f be a hermitian sesquilinear form on E and q its associated Hermitian
quadratic form. Prove that for all x, y in E and α, β in C we have

• q (x+ y) + q (x− y) = 2q (x) + 2q (y) ,

• q (αx+ βy) = |α|2 q (x) + 2Re
(
αβf (x, y)

)
+ |β|2 q (y) .

Exercise 5. Let (e) = {e1, e2, e3} a basis for a vector space E of dimension 3.

1. Let f be the sesquilinear form defined by

f (x, y) = 3x1y1+2ix1y2−5ix1y3+(2 + i)x2y1−7x2y2+x2y3+ix3y1−x3y2+(1− i)x3y3.

1.1. Determine the matrix of f with respect to the basis (e) .

1.2. Is f hermitian?

2. Explain the hermitian form g whose matrix in the base (e) is given by −2 i 5

−i −1 3− 2i

5 3 + 2i 4

 .

Give the hermitian quadratic form associated with g.
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3. Determine, in the basis (e), the matrix of the hermitian form h whose associated
hermitian quadratic form is

q (x) = 3x1x1 − 5ix1x3 + (2− i)x2x3 − 7x2x2 + 5ix3x1 + (2 + i)x3x2 + x3x3.

Exercise 6. Show that the product of two hermitian matrices A and B is a Hermitian
matrix if and only if AB = BA.

Exercise 7. Let A be the hermitian matrix:

A =

 1 1 + i 2i

1− i 4 2− 3i

−2i 2 + 3i 7

 .

Find an invertible matrix P such that P t ·A ·P is diagonal. Deduce the rank and signature
of A.

Exercise 8. Let A be an invertible complex matrix. Show that the matrix
(
A
)t
A is

hermitian definite positive.
Exercise 9. Let q be a hermitian quadratic form on E with polar form f and let x be an

isotropic vector for q.

1. Show that if q is defined then f is non-degenerate.

2. Show that for all y ∈ E and λ ∈ C, we have

q (y + λx) = q (y) + 2Re (λf (x, y)) .

3. Deduce that if q is positive then for all y ∈ E and µ ∈ R, we get

0 ≤ q (y) + 2µ |f (x, y)|2 .

4. Using the previous questions, show that if q is positive and f is nondegenerate, then
q is definite.

Exercise 10. Let A be an invertible complex matrix. Show that if A is hermitian then
A−1 is also hermitian.

Exercise 11. A complex matrix A is said to be anti-hermitian if
(
A
)t

= −A. Show that
the matrix A is anti-hermitian if and only if iA is hermitian.

Exercise 12. Give a Gaussian decomposition of the Hermitian quadratic forms of C3
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whose matrices in the canonical basis are

A =

 1 1− i 0

1 + i 3 i

0 −i 1

 and B =

 0 −i i

i 0 −i
−i i 0

 .

Deduce their core, rank and signature.
Exercise 13. Show that a hermitian quadratic form on a vector spaceE is non-degenerate

if, and only if, the matrix A which represents it in a basis of E is invertible.
Exercise 14. We consider the hermitian quadratic form on C3 given by:

q (x) = x1x1 + (1 + a)x2x2 +
(
1 + a+ a2

)
x3x3 + ix1x2 − ix2x1 − iax2x3 + iax3x2,

where a is a real number and
(
x1 x2 x3

)t
are the coordinates of x in the canonical

basis of C3.

1. Give the matrix of q in the canonical basis as well as its polar form f .

2. Using the Gauss method, decompose q into the sum of squares of modules of inde-
pendent linear forms.

3. Deduce an orthogonal basis of C3 relative to f and give the matrix of q in the new
basis.

4. Discuss according to the values of a the rank, signature and kernel of q.
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CHAPTER 6

SOLUTIONS TO SOME EXERCISES AND

PROBLEMS

T he present chapter consists a detailed solution to some exercises and problems re-
lated to symmetric bilinear forms and quadratic forms. These problems were the

subject of some previous TD’s at department of mathematics.
Exercise 01. Find the corresponding symmetric matrix of each of the following quadratic

forms:

1. q (x, y) = 4x2 − 6xy − 7y2, where E = R2.

2. q (x, y) = xy + y2, where E = R2.

3. q (x, y, z) = x2 + y2 − 2z2 + xy + yz, where E = R3.

4. q (x, y, z) = 2x2 + 2y2 + 2z2 + 2xy + 2yz + 2xz, where E = R3.

5. q (x, y, z, t) = 2x2 + 2y2 + 2z2 + 2xy + 2yz + 2xz, where E = R4.

Solution. We can easily write

1) A =

(
4 −3

−3 −7

)
; since q (x, y) =

(
x y

)( 4 −3

−3 −7

)(
x

y

)
. In fact, we have

(
x y

)( 4 −3

−3 −7

)(
x

y

)
=

(
4x− 3y −3x− 7y

)( x

y

)
= 4x2 − 6xy − 7y2 = q (x, y) .
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Using the same manner, we obtain

2) A =

 0
1

2
1

2
1

 , 3) A =


1

1

2
0

1

2
1

1

2

0
1

2
−2



4) A =

 2 1 1

1 2 1

1 1 2

 , 5) A =


2 1 1 0

1 2 1 0

1 1 2 0

0 0 0 0


Exercise 02. Consider the quadratic form

q : R2 → R

(x, y) 7→ x2 − y2.

1. Calculate the polar form of q, say f .

2. Write f in the matrix form.

3. Calculate the isotropic cone C.

4. Verify that q is nondegenerate.

Solution.

1. We know that
f (u, v) =

1

4
(q (u+ v)− q (u− v)) ,

where u = (x, y) and v = (x′, y′) ∈ R2; i.e.,

f : R2 × R2 → R

(u, v) 7→ f (u, v) .

Then

f (u, v) = f ((x, y) , (x′, y′))

=
1

4
(q (x+ x′, y + y′)− q (x− x′, y − y′))

=
1

4

(
(x+ x′)

2 − (y + y′)
2 − (x− x′)2 + (y − y′)2

)
= xx′ − yy′.
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2. We see that the matrix form of f is given by

f (u, v) =
(
x y

)( 1 0

0 −1

)(
x′

y′

)
= utAv, where u = (x, y) and v = (x′, y′) .

3. We calculate the isotropic cone C. By (3.4), we have

C =
{

(x, y) ∈ R2 ; q (x, y) = 0
}

=
{

(x, y) ∈ R2 ; x2 − y2 = 0
}

=
{

(x, y) ∈ R2 ; (x− y) (x+ y) = 0
}

=
{

(x, y) ∈ R2 ; y = x or y = −x
}
.

4. We verify that q is nondegenerate. Indeed, we have

ker f =
{

(x, y) ∈ R2 ; f ((x, y) , (x′, y′)) = 0, ∀ (x′, y′) ∈ R2
}

=
{

(x, y) ∈ R2 ; xx′ − yy′ = 0, ∀ (x′, y′) ∈ R2
}

= {(0, 0)} .

Thus, f or q is nondegenerate.

Exercise 03. Let f ∈ S2 (E), and let q be the associated quadratic form. Let x0 ∈ E with
q (x0) 6= 0. Setting {

F : is the subspace generated (spanned) by x0,
G = {y ∈ E; f (x0, y) = 0} .

Prove that E = F ⊕G.
Solution. At first, we can check that F ∩G = {0E} .
Let u ∈ F ∩ G. Since u ∈ F , u = kx0 for some scalar k ∈ K. Since u ∈ G, then

f (x0, kx0) = kf (x0, x0) = 0. But, f (x0, x0) 6= 0, then k = 0. This gives u = 0. Thus,
F ∩G ⊂ {0E} .

Second, we prove that E = F +G. Let x ∈ E and let

x =
f (x0, x)

f (x0, x0)
· x0︸ ︷︷ ︸

u

+x− f (x0, x)

f (x0, x0)
· x0︸ ︷︷ ︸

v

,
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where u ∈ F (since u is of the form λx0 with λ =
f (x0, x)

f (x0, x0)
∈ R). Likewise, since

f (x0, v) = f

(
x0, x−

f (x0, x)

f (x0, x0)
· x0
)

= f (x0, x)− f (x0, x) = 0,

then v ∈ G. Thus, we have shown that F ∩G = {0E} and F+G = E, and henceE = F⊕G.

Exercise 04. Let A ∈Mn(R) and x ∈ Rn. Prove that

xtAx = xt
(
A+ At

2

)
x.

Solution. For each A ∈Mn(R) and x ∈ Rn, we have

xtAx = xtAx =
(
xtAx

)t (since xtAx ∈ R)

= xtAt
(
xt
)t (well-known result)

= xtAtx.

Then we can write

xtAx =
1

2
xtAx+

1

2
xtAx =

1

2
xtAx+

1

2
xtAtx = xt

(
A+ At

2

)
x.

This completes the proof.
Exercise 05. Define the quadratic form

q = x21 + 4x1x2 + 3x22.

Calculate the polar form associated with q, denoted by f.
Solution. The polar form f of q is given by

f : R2 × R2 → R

(u, v) 7→ f (u, v) = utAv,

where u = (x1, x2), v = (y1, y2) ∈ R2 and A =

(
1 2

2 3

)
. Hence,

f =
(
x1 x2

)( 1 2

2 3

)(
y1

y2

)
= x1y1 + 2x1y2 + 2x2y1 + 3x2y2.

c©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



72

Exercise 06. Let x =
(
x1 x2

)t
∈ R2. Show that there are infinitely many matrices

A ∈M2(R) such that

xtAx = xt

(
1 4

0 0

)
x, (6.1)

where x ∈ R2.
Solution. Let n ∈ N. From Exercise 06, we have

X t

(
1 4

0 0

)
X = X t

(
1 4

0 0

)
+

(
1 0

4 0

)
2

X

= X t

(
1 2

2 0

)
X (in this case, the matrix is symmetric)

= X t

(
1 n

4− n 0

)
X .

Then (6.1) is true for infinitely many matrices A.
Exercise 7. Let f ∈ S2 (E) and let F be a subspace of E. Prove that

F ⊂ F⊥ ⇔ f (x, x) = 0, for every x ∈ F. (6.2)

Assume that E = R3, and let

f : R3 × R3 → R

((x1, x2, x3) , (y1, y2, y3)) 7→ x1y1 + x2y2 − x3y3.

Define F = {(x1, x2, x3) ∈ R3 ; x1 = x3 and x2 = 0}. Prove by two methods that F ⊂ F⊥.

Solution.

1. Suppose that f (x, x) = 0 for all x ∈ F , and we prove that F ⊂ F⊥. Let y ∈ F, we
have

f (x+ y, x+ y) = 0 for each x ∈ F

= f (x, x) + f (y, y) + 2f (x, y) .

Then for each x ∈ F , f (x, y) = 0. Hence, y ∈ F⊥.

Assume that F ⊂ F⊥ and we show that f (x, x) = 0 for each x ∈ F. In fact, let x ∈ F .
For all y ∈ F , we have

f (y, x) = 0. (since x ∈ F⊥).
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In particular, f (x, x) = 0 for each x ∈ F.

2. 1st Method. For every x = (λ, 0, λ) ∈ F , we have by (6.2) that

f (x, x) = f ((λ, 0, λ) , (λ, 0, λ)) = λ2 + 02 − λ2 = 0.

Hence, F ⊂ F⊥.

2nd Method. By Definition 3.5, we can compute F⊥ as follows:

F⊥ =
{
y ∈ R3; f (x, y) = 0; ∀ x ∈ F

}
=

{
(y1, y2, y3) ∈ R3; f ((λ, 0, λ) , (y1, y2, y3)) = 0; ∀ x = (λ, 0, λ) ∈ F

}
=

{
(y1, y2, y3) ∈ R3; λy1 − λy3 = 0; ∀ x = (λ, 0, λ) ∈ F

}
=

{
(y1, y2, y3) ∈ R3; λ (y1 − y3) = 0; ∀ x = (λ, 0, λ) ∈ F

}
=

{
(y1, y2, y3) ∈ R3; y1 = y3

}
= V ect {(1, 0, 1) , (0, 1, 0)} .

Since

F =
{

(x1, x2, x3) ∈ R3 ; x1 = x3 and x2 = 0
}

= V ect {(1, 0, 1)} ,

then clearly, F ⊂ F⊥.

Exercise 8.

1. Using Gauss’ Method, diagonalize the following two quadratic forms:

a. q1 = x21 + x22 + 2x23 − 4x1x2 + 6x2x3

b. q2 = 2x1x2 + 2x2x3 + 2x1x3.

Then, determine their associated signatures.

2. Diagonalize the following quadratic form (use two methods).

q (x1, x2) = −12x1x2 + 5x22.

Solution.

a. Using Gauss’s method, we put
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x1 = y1 −

1

a11
(a12y2 + ...+ a1nyn)

x2 = y2
...
xn = yn

That is, 
x1 = y1 + 2y2

x2 = y2

x3 = y3.

This implies

q1 = x21 + x22 + 2x23 − 4x1x2 + 6x2x3

= (y1 + 2y2)
2 + y22 + 2y23 − 4 (y1 + 2y2) y2 + 6y2y3

= y21 − 3y22 + 6y2y3 + 2y23

= y21 + q′1 (y2, y3) .

Likewise, let us take {
y2 = z2 + z3

y3 = z3.

It follows that

q′1 = −3y22 + 6y2y3 + 2y23

= −3 (z2 + z3)
2 + 6 (z2 + z3) z3 + 2z23

= −3z22 + 5z23 .

Finally, we obtain

q1 = (x1 − 2x2)
2 + 5x23 − 3 (x2 − x3)2 = f 2

1 + f 2
2 − f 2

3 ,

where f1, f2 and f3 are linearly independent forms over R3 since∣∣∣∣∣∣∣
1 −2 0

0 0 5

0 1 −1

∣∣∣∣∣∣∣ = −5 6= 0.

The signature of q1 is (2, 1).
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b. Consider the quadratic form

q2 = 2x1x2 + 2x2x3 + 2x1x3.

In this case, we put 
x1 = y1 + y2

x2 = y1 − y2
x3 = y3.

We obtain

q2 = 2 (y1 + y2) (y1 − y2) + 2 (y1 − y2) y3 + 2x1y3

= 2y21 + 4y3y1 − 2y22

= q′2.

Setting once again 
y1 = z1 − z3
y2 = z2

y3 = z3.

It follows that

q′2 = 2y21 + 4y3y1 − 2y22

= 2 (z1 − z3)2 + 4z3 (z1 − z3)− 2z22

= 2z21 − 2z22 − 2z23 .

Hence,

q2 = 2 (y1 + y3)
2 − 2y22 − 2y23

= 2

(
x1 + x2

2
+ x3

)2

− 2

(
x1 − x2

2

)2

− 2x23

= f 2
1 − f 2

2 − f 2
3 ,

where f1, f2 and f3 are linearly independent forms over R3 ; since∣∣∣∣∣∣∣
1
2

1
2

1

1 −1 0

0 0 −2

∣∣∣∣∣∣∣ = 2 6= 0

The signature of q2 is (1, 2) . The rank is 3.
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2. Using two methods, we diagonalize the following quadratic form

q (x1, x2) = −12x1x2 + 5x22.

1st method. Setting

x2 = y2 −
(
−6

5
y1

)
= y2 +

6

5
y1, x1 = y1

We obtain

q (x1, x2) = −12x1x2 + 5x22

= −12y1

(
y2 +

6

5
y1

)
+ 5

(
y2 +

6

5
y1

)2

= 5y22 −
36

5
y21

= 5

(
x2 −

6

5
x1

)2

− 36

5
x21

= |f1|2 − |f2|2 .

where f1, f2 and f3 are linearly independent forms over R2, since∣∣∣∣∣∣ 1 −6

5
1 0

∣∣∣∣∣∣ 6= 0.

The signature of q is (1, 1) .

2nd method. We have

q (x1, x2) =
(
x1 x2

)( 0 −6

−6 5

)(
x1

x2

)

= xtAx, where A =

(
0 −6

−6 5

)
∈ S2 (R) .

Then we can write A in the form PDP t, where P is orthogonal and D is diagonal whose
diagonal entries are the eigenvalues of A. The eigenpairs of A are{

λ1 = −4, v1 = (3, 2)

λ2 = 9, v2 = (−2, 3) .
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Therefore,

P =

(
v1
‖v1‖2

v2
‖v2‖2

)
=

(
3√
13

−2√
13

2√
13

3√
13

)
.

which gives

q (x1, x2) = xtAx

= xtPDP tx (since A = PDP t)

=
(
P tx

)t
D
(
P tx

)
= vtDv, where v = P tx.

It follows that

v =

(
3√
13

2√
13

−2√
13

3√
13

)(
x1

x2

)
=

(
3
13

√
13x1 + 2

13

√
13x2

3
13

√
13x2 − 2

13

√
13x1

)
=

(
v1

v2

)
.

That is,

q =
(
v1 v2

)( −4 0

0 9

)(
v1

v2

)
= 9v22 − 4v21

= 9

(
3

13

√
13x2 −

2

13

√
13x1

)2

− 4

(
3

13

√
13x1 +

2

13

√
13x2

)2

= |f1|2 − |f2|2 .

where f1 are f2 linearly independent form over R2, since∣∣∣∣∣ 3
√

13 −2
√

13

3
√

13 2
√

13

∣∣∣∣∣ 6= 0.

The signature is (1, 1).
Exercise 9. Let E =M2 (R) be the vector space of 2× 2 square matrices on R. Let

M =

(
1 2

3 5

)
,

and let f (A,B) = tr (AtMB), where A,B ∈ E.

1. Prove that f is a bilinear form on the space E.
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2. Find the matrix of f with respect to the canonical (standard) basis of E:

B =

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}
.

Solution.

1. We first prove that f is a bilinear form on the space E. Indeed, ∀ A,A′, B ∈ M2(R),
∀ λ ∈ R we have

f (λA+ A′, B) = tr
(

(λA+ A′)
t
MB

)
= tr

(
λAtMB + (A′)

t
MB

)
= λtr

(
AtMB

)
+ tr

(
(A′)

t
MB

)
= λf (A,B) + f (A′, B) .

2. We compute Mf (B), where

B =


(

1 0

0 0

)
︸ ︷︷ ︸

e1

,

(
0 1

0 0

)
︸ ︷︷ ︸

e2

,

(
0 0

1 0

)
︸ ︷︷ ︸

e3

,

(
0 0

0 1

)
︸ ︷︷ ︸

e4


From a simple calculation, we obtain

f (e1, e1) = tr
(
et1Me1

)
= tr

{(
1 0

0 0

)(
1 2

3 5

)(
1 0

0 0

)}

= tr

(
1 0

0 0

)
= 1.

Similarly, we have f (e1, e2) = 0, f (e1, e3) = 2,...

It follows that

Mf (B) =


f (e1, e1) f (e1, e2) f (e1, e3) f (e1, e4)

f (e2, e1) f (e2, e2) f (e2, e3) f (e2, e4)

f (e3, e1) f (e3, e2) f (e3, e3) f (e3, e4)

f (e4, e1) f (e4, e2) f (e4, e3) f (e4, e4)

 =


1 0 2 0

0 1 0 2

3 0 4 0

0 3 0 4

 .
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Exercise 10. Recall that a bilinear form on a vector space E is called alternating form if
and only if

∀ x ∈ E, f (x, x) = 0.

1. Let f be an alternating bilinear form on a vector space E. Prove that f is skew-
symmetric.

2. Assume that f 6= 0 and 2 ≤ dimE <∞. Prove that there exist two vectors u1, u2 ∈ E
such that

f (u1, u2) = 1.

Calculate f (u2, u1).

3. Let U be the v. subspace spanned by u1 and u2. Verify that {u1, u2} is a base of U .
Write the associated matrix of f in this basis.

4. Setting
W = {w ∈ E; f (w, u) = 0, ∀ u ∈ U} = U⊥.

Prove that E = U ⊕W and deduce that there exists a basis B of the vector space E
for which

Mf (B) =



0 1

−1 0

. . .

0 1

−1 0

. . .

0


∈Mn(R).

Solution.

1. For each (x, y) ∈ E2 we have

f (x+ y, x+ y) = 0 (since f is alternating)

= f (x, x)︸ ︷︷ ︸
=0

+ f (y, y)︸ ︷︷ ︸
=0

+f (x, y) + f (y, x) .

Hence, f (x, y) = −f (y, x). Then f is skew-symmetric.
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2. Since f 6= 0, there exist two vectors x, y ∈ E such that f (x, y) = α 6= 0, and so

f
(x
α
, y
)

= f (u1, u2) = 1.

Since f (u1, u2) = −f (u2, u1), then f (u2, u1) = −1.

3. Let U be the vector subspace generated by u1 and u2. We prove that u1 and u2 are
linearly independent. By the way of contradiction, if we put u2 = ku1, then

f (u1, u2) = f (u1, ku1) = kf (u1, u1) = 0.

A contradiction. Then {u1, u2} is a base of U.

The matrix of f associated of {u1, u2} is

Mf ({u1, u2}) =

(
0 1

−1 0

)
.

4. Setting W = {w ∈ E; f (w, v) = 0, ∀ v ∈ U}. We prove that E = U ⊕W.

It is clear that {0E} ⊂ U ∩W. Further, if x ∈ U ∩W implies
x = αu1 + βu2,
f (x, u1) = 0,
f (x, u2) = 0.

where α, β ∈ R. Hence, {
αf (u1, u2) = 0⇒ α = 0

βf (u2, u1) = 0⇒ β = 0.

Then x = 0. Therefore, U ∩W = {0E}.
It remains to be shown that E = U +W. For each x ∈ E, setting

u = f (x, u2)u1 − f (x, u1)u2

We see that x = u+ x− u. Let u is a linear combination of u1 and u2, then u ∈ U .
It suffices to prove that x− u ∈ W. In fact, we see

f (x− u, u1) = f (x− f (x, u2)u1 + f (x, u1)u2, u1)

= f (x, u1)− f (x, u1)

= 0.
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Similarly, we also see

f (x− u, u2) = f (x− f (x, u2)u1 + f (x, u1)u2, u2)

= f (x, u2)− f (x, u2)

= 0.

Hence f (x− u, v) = 0, ∀ v ∈ U. Then x− u ∈ W , which gives the result.
Now, the restriction of f on the set W is an alternating bilinear form. By induction,

there exists a basis B = {u3, u4, ..., un} of W with

Mf (B) =



0 1

−1 0

. . .

0 1

−1 0

. . .

0


∈Mn−2(R).

Thus, u1, u2, ..., un is a basis of E for which the matrix representing f has the desired form.
Exercise 11. Let E be a vector space over R with dimension 2. Let f ∈ S2 (E), and let q

be the associated quadratic form. Prove that the following three statements are equivalent:

a. f is nondegenerate and there is a nonzero vector e1 such that q (e1) = 0.

b. There exists a basis of E for which the matrix of f is given by

A =

(
0 1

1 0

)
.

c. There exists a basis of E for which the matrix of f is given by

D =

(
1 0

0 −1

)
.

Solution. (a)
?⇒ (b). Since f is nondegenerate and e1 6= 0, there exists a vector y ∈ E

such that
f (e1, y) 6= 0.
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We put

z =
1

f (e1, y)
y,

so we get

f (e1, z) = f

(
e1,

1

f (e1, y)
y

)
= 1.

For the vector e2 = z − 1
2
q (z) e1, we find{

f (e1, e2) = f
(
e1, z − 1

2
q (z) e1

)
= 1 = f (e2, e1) ,

f (e2, e2) = 0.

The family {e1, e2} is a basis of E. Otherwise, e2 = ke1 and f (e1, e2) = 0. Here, the matrix
of f is given by

A =

(
0 1

1 0

)
.

(b)
?⇒ (c). Conserving the previous notations. The vectors

e′1 =
1

2
e1 + e2,

e′2 =
1

2
e1 − e2

satisfy the following equations

q (e′1) = f

(
1

2
e1 + e2,

1

2
e1 + e2

)
= 1,

q (e′2) = f

(
1

2
e1 − e2,

1

2
e1 − e2

)
= −1,

f (e′2, e
′
1) = f

(
1

2
e1 + e2,

1

2
e1 − e2

)
= 0.

The family {e′1, e′2} is a basis of E. Otherwise, we get e′2 = αe′1, where α ∈ R. Then

−1 = q (e′2) = q (αe′1) = α2q (e′1) = α2.

A contradiction. In this basis the matrix of f is given by

D =

(
1 0

0 −1

)
.

(c)
?⇒ (a). Conserving the previous notations. The quadratic form is nondegenerate
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since the matrix D is invertible. For the nonzero vector v′ = e′1 + e′2, we have

q (v′) = f (v′, v′) = f (e′1 + e′2, e
′
1 + e′2) = 0.

Exercise 12. Let E be a real vector space and let a ∈ E. Let q be a quadratic form over
E with the polar form f . Define the mapping q′ from E to R, by setting:

∀ x ∈ E, q′ (x) = q (a) q (x)− (f (a, x))2 .

1. Prove that q′ is a quadratic form whose polar form f will be specified.

2. Verify that a ∈ ker f ′ and that ker f ⊂ ker f ′. Deduce the following inclusion set:
R.a ⊂ ker f ′.

3. If a is nonisotropic, i.e., q (a) 6= 0, then prove that ker f ⊕ R · a = ker f ′.

Solution.

1. We see that q′ is a quadratic form because the mapping

f ′ : E × E → R

(x, y) 7→ q (a) f (x, y)− f (a, x) f (a, y)

is a symmetric bilinear form (since f is also a symmetric bilinear form). Further,
f ′ (x, x) = q′ (x) for every x ∈ E.

2. We Verify that a ∈ ker f ′ and ker f ⊂ ker f ′.

For each y ∈ E, we have

f ′ (a, y) = q (a) f (a, y)− f (a, a) f (a, y) = 0.

Hence, a ∈ ker f ′.

We show that ker f ⊂ ker f ′. In fact, if x ∈ ker f , then for each y ∈ E we have

f ′ (x, y) = q (a) f (x, y)︸ ︷︷ ︸
=0

− f (a, x)︸ ︷︷ ︸
=0

f (a, y) = 0.

Thus, x ∈ ker f ′.
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We show that Ra ⊂ ker f ′. Let λ ∈ R. For each y ∈ E, we have

f ′ (λa, y) = f (λa, y) q (a)− f (a, λa) f (a, y)

= λq (a) f (a, y)− λq (a) f (a, y)

= 0.

Therefore, Ra ⊂ ker f ′.

If a is nonisotropic, we prove that ker f ⊕ Ra = ker f ′.
Since ker f and R.a are two subspace of E, then {0E} ⊂ ker f ∩ Ra. If x ∈ ker f ∩ Ra,

then x = λa and f (λa, y) = 0 for each y ∈ E. That is,

f (λa, a) = λq (a) = 0.

Hence λ = 0 (since q (a) 6= 0). Which implies x = 0. Consequently, ker f ∩ Ra ⊂ {0E}.
Finaly, we obtain ker f ∩ Ra = {0E} .

For each x ∈ ker f ′ and y ∈ E, we write

q (a)x = f (a, x) a+ q (a)x− f (a, x) a︸ ︷︷ ︸, (6.3)

where f (a, x) a ∈ Ra. It suffices to prove that q (a)x − f (a, x) a ∈ ker f. In fact, for each
y ∈ E, we have

f (q (a)x− f (a, x) a, y) = q (a) f (x, y)− f (a, x) f (a, y)

= 0 (since x ∈ ker f ′).

From (6.3), we have

x =
f (a, x)

q (a)
a︸ ︷︷ ︸

∈Ra

+
q (a)x− f (a, x) a

q (a)︸ ︷︷ ︸
∈ker f

,

since u ∈ ker f ⇔ αu ∈ ker f.

Exercise 13.

1. Let q be a quadratic form on a vector space E and let {e1, e2, ..., en} be a finite orthog-
onal set for q. Prove the following equality:

q (e1 + e2 + ...+ er) = q (e1) + q (e2) + ...+ q (er) .

2. Let (E, 〈., .〉) be a Hilbert space and let {e1, e2, ..., en} be an orthonormal basis of E.
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Prove that

∀ x ∈ E : x =
n∑
i=1

〈x, ei〉 ei.

3. Let A = {u1, u2, ..., un} be a finite orthonormal set. Show that A is free. Further, for
each x ∈ E prove that the vector

y = x− 〈x, u1〉u1 − 〈x, u2〉u2 − ...− 〈x, un〉un

is orthogonal with ui, for i = 1, 2, ..., n.

Solution.

1. Let q be a quadratic form on a vector space E and let {e1, e2, ..., en} be a finite orthog-
onal set for q. We have

q (e1 + e2 + ...+ er) = f (e1 + e2 + ...+ er, e1 + e2 + ...+ er)

= q (e1) + q (e2) + ...+ q (er) (since f (ei, ej) = 0) for i 6= j)

2. Let {e1, e2, ..., en} be an arbitrarily orthonormal basis of E. We prove that

∀ x ∈ E : x =
n∑
i=1

〈x, ei〉 ei.

For each x ∈ E, we have x = α1e1 + α2e2 + ...+ αnen. Further, we have

〈x, ei〉 = 〈α1e1 + α2e2 + ...+ αnen, ei〉 = αi 〈ei, ei〉 = αi, (6.4)

for i = 1, 2, ..., n. We replace αi by 〈x, ei〉 in the equation (6.4), we obtain for the
desired result.

3. Let A = {u1, u2, ..., un} be a finite orthonormal set. We show that A is free.

For each α1, α2, ..., αn ∈ R, we have

α1u1 + α2u2 + ...+ αnun = 0,

implies
0 = 〈0, ui〉 = 〈α1u1 + α2u2 + ...+ αnun, ui〉 = αi, ∀ i = 1, 2, ..., n.
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Further, for each x ∈ E, the vector

y = x− 〈x, u1〉u1 − 〈x, u2〉u2 − ...− 〈x, un〉un

is orthogonal with ui, i = 1, 2, ..., n; since

〈y, ui〉 = 〈x− 〈x, u1〉u1 − 〈x, u2〉u2 − ...− 〈x, un〉un, ui〉

= 〈x, ui〉 − 〈x, ui〉 〈ui, ui〉︸ ︷︷ ︸
=1

= 0.

Exercise 14. Let q be a quadratic form over Rn which has the matrix A in the standard
basis, and let λmax be the greatest eigenvalue of A. Prove the following inequality:

q (x1, x2, ..., xn) ≤ λmax

(
x21 + x22 + ...+ x2n

)
.

Solution. Let x ∈ Rn with

‖x‖2 =
√
x21 + x22 + ...+ x2n = 1,

and let {u1, u2, ..., un} an orthonormal basis formed by the eigenvectors of A. We have

x = α1u1 + α2u2 + ...+ αnun

with α2
1 + α2

2 + ...+ α2
n = 1, since ‖x‖22 = 〈x, x〉 = 1. In this case, we can write

q (x) = xtAx

= (α1u1 + α2u2 + ...+ αnun)tA (α1u1 + α2u2 + ...+ αnun)

= α2
1u

t
1Au1 + α2

2u
t
2Au2 + ...+ α2

nu
t
nAun

= λ1α
2
1u

t
1u1 + λ2α

2
2u

t
2u2 + ...+ λnα

2
nu

t
nun (since Aui = λiui, i = 1, 2, ..., n)

≤ λmax

(
α2
1u

t
1u1 + α2

2u
t
2u2 + ...+ α2

nu
t
nun
)

= λmax

(
α2
1 + α2

2 + ...+ α2
n

)
(since utiui = 1, i = 1, 2, ..., n)

= λmax (since α2
1 + α2

2 + ...+ α2
n = 1).

Hence, q (x) ≤ λmax.

Now, for each x ∈ Rn we put

u =
x

‖x‖2
; i.e., ‖u‖2 = 1.
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Since q (u) ≤ λmax, it follows that

q

(
x

‖x‖2

)
=

1

‖x‖2
q (x) ≤ λmax .

Therefore, q (x) ≤ λmax ‖x‖2 = λmax (x21 + x22 + ...+ x2n). This completes the proof.
Exercise 15.

1. Let A be a hermitian matrix, and let

f : Cn × Cn → C

(x, y) 7→ xtAy.

Prove that f is a hermitian form.

2. Let f be a sesquilinear Hermitian form over a vector space E. Show that

∀ x, y, y′ ∈ E, ∀ α, β ∈ C : f (x, αy + βy′) = αf (x, y) + βf (x, y′) .

Notice that if f : E × E → C is linear on the left and semilinear on the right, then f is
called ”sesquilinear form”, that is, ∀ x, x′, y, y′ ∈ E, ∀ λ ∈ C :

• f (λx+ x′, y) = λf (x, y) + f (x′, y)

• f (x, λy + y′) = λf (x, y) + f (x, y′) .

A hermitian sesquilinear form is a sesquilinear form f over E satisfying

f (x, y) = f (y, x) for all x, y ∈ E.

1. Let A be a hermitian matrix. We prove that the mapping

f : Cn × Cn → C

(x, y) 7→ xtAy

is a hermitian form. (i.e., f is hermitian sesquilinear form ). In fact, for every x, x′, y ∈
Cn and λ ∈ C, we have

f (λx+ x′, y) = (λx+ x′)
t
Ay

= λxtAy + (x′)
t
Ay

= λf (x, y) + f (x′, y) .
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Thus, f is linear from the left. Similarly, for every x, y, y′ ∈ Cn and λ ∈ C, we have

f (x, λy + y′) = xtA(λy + y′)

= λxtAy + xtA(y)′

= λf (x, y) + f (x, y′) .

Thus, f is semi-linear from the right.

Moreover, for each x, y ∈ Cn, we have

f (x, y) = xtAy

= (xtAy)t (since xtAy ∈ C)

= (y)tAtx

= yt(At)x

= ytA∗x

= ytAx (since A is hermitian)

= f (y, x) .

2. Let f be a sesquilinear hermitian form over a vector space E. We show that

∀x, y, y′ ∈ E,∀α, β ∈ C : f (x, αy + βy′) = αf (x, y) + βf (x, y′) .

In fact, we have

∀ x, y, y′ ∈ E, ∀ α, β ∈ C : f (x, αy + βy′) = f (αy + βy′, x)

= αf (y, x) + βf (y′, x)

= αf (y, x) + βf (y′, x)

= αf (x, y) + βf (x, y′) .

Exercise 16. Let

f : C2 × C2 → C

(x, y) 7→ 4x1y1 + (2− i)x1y2 + (2 + i)x2y1 − 5x2y2.

Show that f is a hermitian sesquilinear form. Calculate f (x, x), where x ∈ C2.
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Solution. We write f in the form

f (x, y) =
(
x1 x2

)( 4 2− i
2 + i −5

)(
y1

y2

)

= X tAY , where X =

(
x1

x2

)
and Y =

(
y1

y2

)
.

Since A∗ = A, then A is Hermitian. Then f is a Hermitian sesquilinear form.
Calculate f (x, x), where x ∈ C2. In fact, we have

f (x, x) = 4 |x1|2 + (2− i)x1x2 + (2 + i)x2x1 − 5 |x2|2 .

Exercise 17.
1. Diagonalize the following Hermitian quadratic forms:

i) q1 = ix1x2 − ix2x1, E = C2.

ii) q2 = x1x1 + ix1x2 − ix2x1 + x2x2, E = C2.

iii) q3 = x1x1 + a12x1x2 + a21x2x1 + a22x2x2.

2. Deduce the signature of the quadratic form given by:

q′2 = αx1x1 + ix1x2 − ix2x1 + x2x2, α ∈ R.

Solution.

• We can write

q1 = ix1x2 − ix2x1
= x1 (ix2) + x1 (−ix2)

= x1
(
−ix2

)
+ x1 (−ix2) (which is of the form z1z2 + z1z2)

=
1

2
|x1 − ix2|2 −

1

2
|x1 + ix2|2 (since z1z2 + z1z2 =

1

2
|z1 + z2|2 −

1

2
|z1 − z2|2 )

= |f1|2 − |f2|2 ,

where f1 et f2 are linearly independent forms over C2 ; since∣∣∣∣∣ 1 −i
1 i

∣∣∣∣∣ 6= 0.

The signature of q1 is (1, 1) .
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• Likewise, we have

q2 = x1x1 + ix1x2 − ix2x1 + x2x2

= (x1 − ix2) (x1 + ix2)

= (x1 − ix2) (x1 − ix2)

= |x1 − ix2|2

= |f1|2 .

The signature of q2 is (1, 0) .

For the quadratic form q′2 = αx1x1 + ix1x2 − ix2x1 + x2x2, α ∈ R. We see that

q′2 = (α− 1)x1x1 + q2

= (α− 1) |x1|2 + |x1 − ix2|2 .

We deduce that 
α = 1, the signature is (1, 0) .

α > 1, the signature is (2, 0) .

α < 1, the signature is (1, 1) .

• We have

q3 = x1x1 + a12x1x2 + a21x2x1 + a22x2x2

= (x1 + a21x2) (x1 + a12x2) + (a22 − a12a21)x2x2
= (x1 + a21x2) (x1 + a21x2) + (a22 − a12a21)x2x2
= |x1 + a21x2|2 + (a22 − a12a21)︸ ︷︷ ︸

∈R

|x2|2 .

Exercise 18. Let E be a vector space with dimE = 3, and let q be the hermitian
quadratic form over E given by

q = a12x1x2 + a13x1x3 + a12x2x1 + a23x2x3 + a13x3x1 + a23x3x2.

Give the diagonal form of q using Gauss method.
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Solution. We have

q = a12x1x2 + a13x1x3 + a12x2x1 + a23x2x3 + a13x3x1 + a23x3x2

= x1 (a12x2 + a13x3) + x1 (a12x2 + a13x3) + a23x2x3 + a23x3x2

= x1 (a12x2 + a13x3) + a23x2x3 + x1 (a12x2 + a13x3) + a23x3x2

= x1 (a12x2 + a13x3) +
a23
a13

x2 (a12x2 + a13x3)−
a23a12
a13

x2x2 +

x1 (a12x2 + a13x3) +
a23
a13

x2 (a12x2 + a13x3)−
a23a12
a13

x2x2︸ ︷︷ ︸
=

(
x1 +

a23
a13

x2

)
(a12x2 + a13x3) +

(
x1 +

a23
a13

x2

)
(a12x2 + a13x3)−

(
a23a12
a13

+
a23a12
a13

)
x2x2

=
1

2

∣∣∣∣x1 +

(
a23
a13

+ a12

)
x2 + a13x3

∣∣∣∣2 − 1

2

∣∣∣∣x1 +

(
a23
a13
− a12

)
x2 − a13x3

∣∣∣∣2 − 2Re

(
a23a12
a13

)
|x2|2 .

Exercise 19. Diagonalize the Hermitian quadratic form given by its matrix:

Mq =

 0 1− i 0

1 + i 0 i

0 −i 0

 .

Here,Mq is the matrix of the Hermitian quadratic form q with respect to the standard basis
of C3.

Solution. We have

q = (1− i)x1x2 + (1 + i)x2x1 + ix2x3 − ix3x2
= x2 [(1 + i)x1 + ix3] + x2 [(1− i)x1 − ix3]

= x2[(1− i)x1 − ix3] + x2 [(1− i)x1 − ix3] (which is of the form z1z2 + z1z2)

=
1

2
|x2 + (1− i)x1 − ix3|2 −

1

2
|x2 − (1− i)x1 + ix3|2

= |f1|2 − |f2|2 .

The signature is (1, 1) .

Exercise 20. Let

B =

 1 0 b

0 a+ i a

b b+ 1 b− ai

 , a, b ∈ C.

For which values of the parameters a and b is the matrix B Hermitian? In the case when
B is Hermitian, find its Hermitian quadratic form.

c©2024, University 8 Mai 45 Guelma. Department of Mathematics. Djamel Bellaouar



92

Solution. The matrix B is Hermitian if and only if

B =
(
B
)t ⇔

 1 0 b

0 a+ i a

b b+ 1 b− ai

 =

 1 0 b

0 a− i b+ 1

b a b+ ai



⇔


a+ i ∈ R
b+ 1 = a

b− ai ∈ R

⇔


a = α− i, where α ∈ R
b = α− 1− i
α− 1− i− (α− i) i ∈ R

⇔


a = α− i, where α ∈ R
b = (α− 1)− i
α− 2− (1 + α) i ∈ R

⇔


α = −1,

a = −1− i
b = −2− i.

Therefore,

B =

 1 0 −2− i
0 −1 −1 + i

−2 + i −1− i −3

 .

Now, we give the analytic expression of the corresponding Hermitian quadratic form of
B. (see (??)):

qB = x1x1 + (−2− i)x1x3 − x2x2 + (−1 + i)x2x3 + (−2 + i)x3x1 + (−1− i)x3x2 − 3x3x3.

Exercise 21 Prove that every real quadratic form q = xtAx is diagonalizable.
Further, prove that if q is definite positive, then the integral

I =

∫ ∫
...

∫
Rn

e−q(x1,x2,...,xn)dx1dx2...dxn

converges and calculate its value1.

1Use the following well-known formula:
∫ +∞
−∞ e−t

2

=
√
π.
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Solution. Let

q = xtAx

=
(
x1 x2 · · · xn

)


a11 a12 · · · a1n

a12 a22 · · · a2n

a1n a2n · · · ann




x1

x2
...
xn


be quadratic form over Rn. We prove that q is diagonalizable. However, since A is sym-
metric, there exists an orthogonal matrix P such that A = PDP t, where

D = diag {λ1, λ2, ..., λn} .

It follows that

q = xtAx = xt
(
PDP t

)
x =

(
xtP

)
D
(
P tx

)
=
(
P tx

)t
DP tx.

Setting

P tx = v =


v1

v2
...
vn

 ,

Implies

q = vtDv

=
(
v1 v2 · · · vn

)


λ1

λ2
. . .

λn




v1

v2
...
vn


= λ1v

2
1 + λ2v

2
2 + ...+ λnv

2
n,

where (λi)i=1,2,...,n are the eigenvalues of A. Further, suppose that q is definite positive, i.e.,
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λi > 0 for every i = 1, 2, ..., n. Then

I =

∫ ∫
...

∫
Rn

e−q(x1,x2,...,xn)dx1dx2...dxn

= αJ

∫ ∫
...

∫
Rn

e−(λ1v21+λ2v22+...+λnv2n)dv1dv2...dvn, where αJ ∈ R∗

=
αJ√

λ1λ2...λn

(∫ +∞

−∞
e−t

2

dt

)n
=

αJ√
λ1λ2...λn

(√
π
)n
.

Note that
dv1dv2...dvn =

1

αJ
dx1dx2...dxn

Exercise 22. Let q = xtAx be a quadratic form over the vector space Rn. Prove that

q is nondegenerate⇔ det (A) 6= 0 (i.e., A is invertible).

Solution. By Definition 3.6, recall that ker f = {x ∈ E; xtAy = 0 for each y ∈ E}. Then

ker f = {0} ⇔ ∀ y ∈ Rn : xtAy = 0⇒ x = 0

⇔ ∀ y ∈ Rn : ytAtx = 0⇒ x = 0

⇔ Atx = 0⇒ x = 0 ; since
(
∀ y ∈ Rn : ytAtx = 0

)
⇔ Atx = 0

⇔ At ∈ GLn (R)

⇔ A ∈ GLn (R) .

Exercise 23. Let E = R2 [x] be the vector space of polynomials having degree ≤ 2, and
let

Q : E → R

p 7→ p (0) p (1) .

1. Prove that Q is a quadratic form, and then give its polar form f .

2. DetermineMQ (B), where B is the canonical basis of E.

3. Prove that f is degenerate. Is it positive ?, definite positive?, negative?, definite neg-
ative?

Solution.
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1. From simple computation, the polar form of Q is given by

f : R2 [x] R2 [x]→ R

(p, q) 7→ f (p, q) =
1

4
(Q (p+ q)−Q (p− q))

=
1

2
p (0) q (1) +

1

2
p (1) q (0) .

2. Calculate the matrixMQ (B), where B is the canonical basis of R2 [x]. We have

f (1, 1) = 1, f (1, x) =
1

2
, f
(
1, x2

)
=

1

2
, f
(
x, x2

)
= 0, f

(
x2, x2

)
= 0.

Therefore,

MQ (B) =


1

1

2

1

2
1

2
0 0

1

2
0 0

 .

3. Since det (MQ (B)) = 0, then f is degenerate.

Further, Q neither positive nor negative; since{
Q (2x− 1) = (−1)× 1 = −1 < 0,

Q (−x− 2) = (−2)× (−3) = 6 > 0.

Remark 6.1. The eigenvectors ofMQ (B) are 1
2

√
3 + 1

2
, 1
2
− 1

2

√
3, 0. ThenMQ (B) is neither

positive nor negative.

Exercise 24. Let (E, 〈., .〉) an inner product space (a pre-Hilbert space) and let F be a
subspace ofE. Prove that F ⊂

(
F⊥
)⊥ and so F =

(
F⊥
)⊥wheneverE has finite dimension.

Solution. We have{
F⊥ = {x ∈ E ; 〈x, y〉 = 0 for each y ∈ F} ,(
F⊥
)⊥

=
{
x ∈ E ; 〈x, y〉 = 0 for each y ∈ F⊥

}
.

We prove that F ⊂
(
F⊥
)⊥. Let x0 ∈ F . Assume that x0 /∈

(
F⊥
)⊥, there exists y0 ∈ F⊥ such

that 〈x0, y0〉 6= 0. But, 〈x, y0〉 = 0 for every x ∈ F . A contradiction.
Next, assume that E is a finite dimension space. Since E = F ⊕ F⊥ = F⊥ ⊕

(
F⊥
)⊥, by

(1.1) we get

dimF + dimF⊥ = dimE et dim
(
F⊥
)⊥

+ dimF⊥ = dimE.

which gives dimF = dim
(
F⊥
)⊥. Moreover, since F ⊂

(
F⊥
)⊥, we have F =

(
F⊥
)⊥
.
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Exercise 25. Let ϕ be the mapping defined on the vector space E = Rn [x] by

ϕ (P,Q) =

∫ b

a

P (t)Q (t) dt, where a < b.

1. Prove that ϕ is an inner product (a scalar product).

2. For n = 2, calculateMϕ (B) "this is the matrix of ϕ in the standard basis of R2 [x]".

3. Apply Cauchy-Schwarz’s inequality.

Solution. We prove that ϕ is an inner product. That is, ϕ is a symmetric bilinear form
definite positive.

For each (P,Q, P1, Q1) ∈ E4 and for each λ ∈ R, we have

ϕ (λP + P1, Q) =

∫ b

a

(λP + P1) (t)Q (t) dt

=

∫ b

a

(λP (t)Q (t) + P1 (t)Q (t)) dt

= λ

∫ b

a

P (t)Q (t) dt+

∫ b

a

P1 (t)Q (t) dt

= λϕ (P,Q) + ϕ (P1, Q) ,

and also, we have

ϕ (P, λQ+Q1) =

∫ b

a

P (t) (λQ+Q1) (t) dt

=

∫ b

a

P (t) (λQ (t) +Q1 (t)) dt

= λ

∫ b

a

P (t)Q (t) dt+

∫ b

a

P (t)Q1 (t) dt

= λϕ (P,Q) + ϕ (P,Q1) .

Then ϕ is a bilinear form. Further, ϕ is symmetric since for each (P,Q) ∈ E2, one has

ϕ (P,Q) =

∫ b

a

P (t)Q (t) dt =

∫ b

a

Q (t)P (t) dt = ϕ (Q,P ) .

For all P ∈ E−{0}, we have ϕ (P, P ) =
∫ b
a
P 2 (t) dt > 0. Then ϕ is definite positive. Hence

ϕ is an inner product.
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Now, we calculate Mϕ (B) :

Mϕ (B) =

 ϕ (1, 1) ϕ (1, t) ϕ (1, t2)

ϕ (1, t) ϕ (t, t) ϕ (t, t2)

ϕ (1, t2) ϕ (t, t2) ϕ (t2, t2)



=


∫ b
a
dt

∫ b
a
tdt

∫ b
a
t2dt∫ b

a
tdt

∫ b
a
t2dt

∫ b
a
t3dt∫ b

a
t2dt

∫ b
a
t3dt

∫ b
a
t4dt



=


b− 1

1

b2 − a2

2

b3 − a3

3
b2 − a2

2

b3 − a3

3

b4 − a4

4
b3 − a3

3

b4 − a4

4

b5 − a5

5

 .

• From Cauchy-Schwarz inequality, for each (P,Q) ∈ E2, we have

|ϕ (P,Q)|2 = |〈P,Q〉|2 ≤ 〈P, P 〉 〈Q,Q〉

That is, ∣∣∣∣∫ b

a

P (t)Q (t) dt

∣∣∣∣2 ≤ ∫ b

a

P 2 (t) dt

∫ b

a

Q2 (t) dt.

Exercise 26. Let A be a symmetric matrix with real entries. Prove that the quadratic
form q = xtAx is definite positive if and only, if the eigenvalues of A are strictly positive.

Solution. Let q = xtAx be quadratic form definite positive, where A ∈ Sn(R) and let
(λ, x) be eigenpair of A. Since x 6= 0, it follows that

0 < xtAx = 〈x,Ax〉 = 〈x, λx〉 = λ 〈x, x〉︸ ︷︷ ︸
>0; since x 6=0.

⇔ λ > 0; because λ ∈ R (A is symmetric).

Exercise 27. Let f be a bilinear form on a vector space E. Show that the mapping:

q : E → R

x 7→ f (x, x)

is a quadratic form.
Solution. Let f be a bilinear form over E. Clearly, the mapping

ϕ : E × E → R

(x, y) 7→ ϕ (x, y) =
f (x, y) + f (y, x)

2
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is symmetric bilinear form. Further, for each x ∈ E we have ϕ (x, x) = f (x, x) = q (x).
Then q is a quadratic form over E.

Exercise 28. Let q be a quadratic form over E. Prove that two vectors x and y satisfying
q (x) q (y) < 0 are independent.

Solution. Assume, by the way of contradiction that x, y are dependent. Since x and y

are nonzero (otherwise, if x or y is zero then q (x) q (y) = 0), there exists λ ∈ R∗ such that
y = λx. By (3.5), q (x) q (y) = λ2 (q (x))2 > 0, this contradicts our assumption.

Exercise 29. Diagonalize the quadratic form

q (x, y) = ax2 + 2bxy + cy2.

Deduce its signature.
Solution. Note that

q (x, y) =
(
x y

)( a b

b c

)(
x

y

)
.

1. Assume that a 6= 0. By (3.11), we put

x = x′ − 1

a
(by′) and y = y′.

It follows that

q (x, y) = ax2 + bxy + cy2

= a

(
x′ − b

a
y′
)2

+ 2b

(
x′ − b

a
y′
)
y′ + c (y′)

2

= a(x′)2 +

(
c− b2

a

)
(y′)2

= a(x+
b

a
y)2 +

(
c− b2

a

)
y2

= a · |f1|2 +

(
c− b2

a

)
· |f2|2 ,

where f1 = x+ b
a
y and f2 = y are two independent linear forms over R2, since∣∣∣∣∣∣

1 0
b

a
1

∣∣∣∣∣∣ 6= 0.

• If a, c− b2

a
> 0, then the signature of q is (2, 0) .
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• If a, c− b2

a
< 0, then the signature of q is (0, 2) .

• If a > 0 and c− b2

a
< 0 or a < 0 and c− b2

a
> 0, then the signature of q is (1, 1).

2. Assume that a = 0 and b 6= 0. There are two cases.

2.1. For c = 0, we let
x = x′ + y′ and y = x′ − y′,

which implies

q (x, y) = 2bxy = 2b (x′ + y′) (x′ − y′)

= 2b(x′)2 − 2b(y′)2 = 2b(
x+ y

2
)2 − 2b(

x− y
2

)2.

2.2. For c 6= 0, we let

y = u− 1

c
(bv) and x = v.

It follows that

q = 2bxy + cy2

= 2bv

(
u− b

c
v

)
+ c

(
u− b

c
v

)2

= cu2 − b2

c
v2

= c

(
y +

b

c
x

)2

− b2

c
x2.

Exercise 30. Let A ∈ Mn(R) be a symmetric definite positive matrix. Using two meth-
ods, prove that det (A) is strictly positive.

Solution. 1st method. We show that A is definite positive⇔ ∀ λ ∈ Sp (A) : λ > 0. In
fact, if A is definite positive, for each eigenpair (λ, x) of A we have

0 < xtAx = 〈x,Ax〉 = 〈x, λx〉 = λ 〈x, x〉︸ ︷︷ ︸
>0, since x 6=0.

⇔ λ > 0, since λ ∈ R (A is symmetric).

It follows that
det (A) =

∏
λ∈Sp(A)

λ > 0.

2nd method. In the case when A is symmetric definite positive, we deduce from Theo-
rem 2.5 that A = M tM , where M ∈ GLn (R). Hence, det (A) = det (M tM) = (det (M))2 >

0 (note that det (M) = det (M t) and detM 6= 0 since M is invertible).
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Remark 6.2. Let A ∈ Mn(C) be a hermitian definite positive matrix. Then det (A) ∈
R∗+.

Exercise 31. Let E be a real vector space and let q be a nondegenerate quadratic form
over E of the polar form f . Let a ∈ E be a nonisotropic vector. Define the mapping:

Sa : E → E

x 7→ Sa (x) = x− 2
f (x, a)

q (a)
a.

1. Verify the equality

f (Sa (x) , Sa (y)) = f (x, y) for any (x, y) ∈ E2.

2. Let x1 and x2 be two vectors of E such that q (x1) = q (x2) 6= 0. Prove that at least
one of the vectors x1 + x2 and x1 − x2 is nonisotropic (use the way of contradiction).

3. Deduce that there exists a nonisotropic vector a′ ∈ E such that

Sa′ (x1) = −x2 or Sa′ (x1) = x2.

Solution.

1. For any (x, y) ∈ E2, we see that

f (Sa (x) , Sa (y)) f

(
x− 2

f (x, a)

q (a)
a, y − 2

f (x, a)

q (a)
a

)
= f (x, y)− 2f (y, a) f (x, a)

q (a)
− 2f (x, a) f (a, y)

q (a)
+ 4

f (x, a) f (y, a)

q (a)
= f (x, y) .

2. Assume that both x1 + x2 and x1 + x2 are isotropic. Therefore,{
f (x1 + x2, x1 + x2) = 0,

f (x1 − x2, x1 − x2) = 0.

Implies {
q (x1) + q (x2) + 2f (x1, x2) = 0,

q (x1) + q (x2)− 2f (x1, x2) = 0.

So, 4q (x1) = 4q (x2) = 0. This is a contradiction.
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3. In the case when x1 + x2 = a′ is nonisotropic, we get

Sa′ (x1) = Sx1+x2 (x1) = x1 − 2
f (x1, x1 + x2)

q (x1 + x2)
(x1 + x2)

= x1 −
2 (q (x1) + f (x1, x2))

q (x1) + q (x2) + 2f (x1, x2)
(x1 + x2)

= x1 −
q (x1) + f (x1, x2)

q (x1) + f (x1, x2)
(x1 + x2)

= −x2.

Similarly, in the case when x1 − x2 = a′ is nonisotropic, we can prove that Sa (x1) =

x1. Indeed, we have

Sa′ (x1) = Sx1−x2 (x1) = x1 − 2
f (x1, x1 − x2)
q (x1 − x2)

(x1 − x2)

= x1 −
2 (q (x1)− f (x1, x2))

q (x1) + q (x2)− 2f (x1, x2)
(x1 + x2)

= x1 −
q (x1)− f (x1, x2)

q (x1)− f (x1, x2)
(x1 − x2)

= x2.

As required.

Exercise 32. Compute the signature of each of the following quadratic forms:

1. (i) q = 2x1x3 + 2x2x3.

(ii) q =
n∑
i,j

ij · xixj , n = 1, 2, ...

Solution. (i) See Example 3.11.
(ii) We see that

q =
n∑
i,j

ij · xixj = (x1 + 2x2 + 3x3 + . . .+ nxn)2 ,

and so, the signature of this quadratic form is (1, 0) .
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Conclusion

Quadratic forms have many applications in cryptography. In the context, it is very in-
teresting to know large prime numbers which are represented by some special quadratic
forms. For example, it is well known that every prime number of the form 4k + 1 can be
represented by the quadratic form q = x2 + y2. Currently, there are many open problems
on the distribution of values of quadratic forms, some others include quadratic forms in-
volving systems of forms having k-tuple of variables. For more information, see the paper
Ten problems on quadratic forms stated in [7]. In addition, in sesquilinear algebra, the study
of Hermitian spaces is the basic of Hermitian Geometry.
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